CLASSES

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

1. Let $A, B C$ be 2×2 matrices with entries from the set of real numbers. Operation '*' is defined as follows

$$
A * B=\frac{1}{2}(A B+B A) \text {, then }
$$

(A) $A * I=A$
(B) A * $A=A^{2}$
(C) A * $B=B$ * A
(D) All of the above
2. Two persons ' A ' and ' B ' have respectively $n+1$ and n coins which they toss simultaneously. Then the probabilty that A will have more heads than B is
(A) $\frac{1}{2}$
(B) $>\frac{1}{2}$
(C) $<\frac{1}{2}$
(D) None of these
3. Let λ and α be real. The set of all values of λ for which the system of linear equations.
$\lambda x=(\sin \alpha) y+(\cos \alpha) z=0$
$x+(\cos \alpha) y+(\sin \alpha) z=0$
$x+(\sin \alpha) y-(\cos \alpha) z=0$
has a non-trivial solution, is
(A) $[0, \sqrt{2}]$
(B) $[-\sqrt{2}, 0]$
(C) $[-\sqrt{2}, \sqrt{2}]$
(D) none of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
4. For any two independent events E_{1} and $\mathrm{E}_{2}, \mathrm{P}\left\{\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right) \cap\left(\overline{\mathrm{E}}_{1} \cap \overline{\mathrm{E}}_{2}\right)\right\}$ is
(A) $<\frac{1}{4}$
(B) $>\frac{1}{4}$
(C) $\geq \frac{1}{2}$
(D) None of these
5. There are 11 points on a plane with 5 lying on one straight line and another 5 lying on a second straight line which is parallel to the first line. The remaining point is not collinear with any two of the previous 10 points. The number of triangles that can be formed with vertices chosen from these 11 points is
(A) 85
(B) 105
(C) 125
(D) 145
6. The number of different ways the letters of the word VECTOR can be placed in 8 boxes given below such that no row is empty is equal to
(A) 26
(B) $26 \times 6!$
(C) 6 !
(D) $2!\times 6!$
7. Let G be a group and $\alpha, \beta \in \mathrm{G}$. Then $\left(\alpha^{-1} \beta\right)^{-1}$ is-
(A) $\alpha \beta^{-1}$
(B) $\beta^{-1} \alpha$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $\alpha^{-1} \beta^{-1}$,
(D) $\beta^{-1} \alpha^{-1}$
8. The transformation defined below

$$
\begin{aligned}
& \mathrm{I}:(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}_{1}:(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-\mathrm{y}, \mathrm{x}) \\
& \mathrm{T}_{2}:(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{y}, \mathrm{x}-\mathrm{y}) \\
& \mathrm{T}_{3}:(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x},-\mathrm{y}) \\
& \mathrm{T}_{4}:(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}-\mathrm{x},-\mathrm{x}) \\
& \mathrm{T}_{5}:(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{y},-\mathrm{x}) \text { form a cyclic group, whose generator is }
\end{aligned}
$$

(A) T_{2}
(B) T_{3}
(C) T_{4}
(D) T_{5}
9. If the sum of the roots of the equation $x^{2}-p x \neq q=0$ be m times their difference, then -
(A) $p^{2}\left(m^{2}-1\right)=4 m^{2} q$
(B) $\mathrm{p}^{2}=\mathrm{m}^{2} \mathrm{q}$
(C) $p^{2}=q$
(D) None.
10. The area enclosed between the circles
$r=2 a \cos \theta$ and $r=4 a \cos \theta$ is
(A) πa^{2}
(B) $3 \pi \mathrm{a}^{2}$
(C) $3 a^{2}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) None of these
11. $\iint \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ over the area in the first quadrant of the circle $x^{2}+y^{2}=a^{2}$ is
(A) πa^{3}
(B) $\frac{\pi}{6} a^{3}$
(C) $\frac{\pi}{12} a^{3}$
(D) $\frac{a^{3}}{6}$
12. Evaluate $I=\iiint z d x d y d z$ over the volume enclosed between the cone $x^{2}+y^{2}=z^{2}$ and the sphere $x^{2}+y^{2}+z^{2}=1$ above $z=0$.
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{8}$
(D)

2
13. The volume of the solid obtained by revolving the loop of the curve $a^{2} y^{2}=x^{2}(2 a-x)(x-a)$ about x-axis is,
(A) $\frac{23}{60} \pi a^{3}$
(B) $23 \pi a^{3}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $60 \pi \mathrm{a}^{3}$
(D) $\frac{60}{23} \mathrm{a}^{3}$.
14. For the L.P. Problem $\operatorname{Min} z=2 x+y$ subject to $5 x+10 y \leq 50, x+y \geq 1, y \leq 4$ and $x, y \geq 0$, then $z=$
(A) 0
(B) 1
(C) 2
(D) $1 / 2$
15. For the L.P. problem $\operatorname{Min} Z=2 x_{1}+3 x_{2}$ such that
$-x_{1}+2 x_{2} \leq 4, x_{1}+x_{2} \leq 6, x_{1}+3 x_{2} \geq 9$ and $x_{1}, x_{2} \geq 0$ then
(A) $x_{1}=1.2$
(B) $X_{2}=2.6$
(C) $z=10.2$
(D) All of these
16. A vertex of the linear inequalities $2 x+3 y \leq 6, x+4 y \leq 4$ and $x, y \geq 0$, is
(A) $(1,0)$
(B) $(1,1)$
(C)

(D)
$\left(\frac{2}{5}, \frac{12}{5}\right)$
17. The probability of solving a question by three students are $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$ respectively. Probability of question being solved will be

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $\frac{33}{48}$
(B) $\frac{35}{48}$
(C) $\frac{31}{48}$
(D) $\frac{37}{48}$
18. In a college, 25% of the boys and 10% of the girls offer Mathematics. The girls constitute of 60% of the total number of students. If a students is selected at random and is found to be studying Mathematics, the probability that the student is a girl, is
(A) $\frac{1}{6}$
(B) $\frac{3}{8}$
(C) $\frac{5}{8}$
(D) $\frac{5}{6}$
19. The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are
(A) $\frac{1}{9} \cdot \frac{1}{3}$
(B) $\frac{1}{16}, \frac{1}{4}$
(C) $\frac{1}{4}, \frac{1}{2}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) None of these
20. If $u=r^{m}$ where $r^{2}=x^{2}+y^{2}+z^{2}$, then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$ is equal to-
(A) r^{m-2}
(B) $m(m-1) r m-2$
(C) $m(m+1) r m-2$
(D) $\left(m^{2}-1\right) r^{m-}$
21. The maximum value of $f(x)=2|x-1|+3|x-2|$ for all x Ris
(A) 1
(B) 2
(C) 3
(D) None of these
22. The area bounded by the curve $y=\tan x, 0 \leq y<\frac{\pi}{2}$ from $x=0$ to $x=1$, the $x-$ axis and the ordinate at $x=1$ is
(A) $\frac{\pi}{4}-\frac{1}{2} \log 2$
(B) $\frac{\pi}{4}-\log \sqrt{2}$
(C) $\frac{\pi}{4}$
(D) $\log 2$
23. The area bounded by the curves $y^{2}=9 x, x-y+2=0$ is given by-
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{3}{2}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $\frac{5}{4}$
24. The line $y=x+1$ is revolved about x - axis. The volume of solid of revolution formed by revolving the area covered by the given curve, x - axis and the lines $x=0 x=2$ is -
(A) $\frac{19 \pi}{3}$
(B) $\frac{17 \pi}{3}$
(C) $\frac{13 \pi}{3}$
(D) $\frac{26 \pi}{3}$
25. The solution of the differential equation $\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y=\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x \cdot \frac{d y}{d x}$ is given by-
(A) $x y \sin \frac{x}{y}=C$
(B) $x y \cos \frac{x}{y}=C$
(C) $x y \sin \frac{y}{x}=C$
(D) $x y \cos \frac{y}{x}=C$
26. If $\cot y \operatorname{cosec} y \frac{d y}{d x}+\frac{1}{x} \operatorname{cosec} y=\frac{1}{x^{2}}$ then-
(A) $\sec y \sec x=\sin x+C$
(B) $\operatorname{cosec} y \sec x=\sin x+C$
(C) $\operatorname{cosec} y \operatorname{cosec} x=\cos x+C$
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

27. The general solution of the differential equation $\left(D^{2}+D-2\right) y=e^{x}$ is given by -
(A) $y=C_{1} e^{x}+C_{2} e^{-2 x}+\frac{1}{3} x e^{x}$
(B) $y=C_{1} e^{x}+C_{2} e^{-2 x}$
(C) $y=C_{1} e^{x}+C_{2} e^{-2 x}+\frac{1}{6} x^{2} e^{x}$
(D) $y=\frac{1}{3} x e^{x}+\left(C_{1}+C_{2} x\right) e^{-2 x}$
28. If $D=\frac{d}{d x}$, then $\frac{1}{D^{2}+D+1} \sin x$ equals -
(A) $-\cos x$
(B) $\cos x$
(C) $\cos x-\sin x$
(D) $\sin x$
29. The degree of the differential equation $\left[y+x\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\right]^{\frac{1}{4}}=\frac{d^{3} y}{d x^{3}}$ is given by-
(A) 2
(B) 3
(C) 4
(D) 1
30. Let V be the vector space of all 2×2 matrices over the field F, then the dimension of V is(A) 2
(B) n
(C)
(D) Arbitrary
31. If $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$, this means that -
(A) Vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear
(B) Vectors $\vec{a}, \vec{b}, \vec{c}$ are non-collinear

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(C) Vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar
(D) None of these
32. The mean and variance of a binomial distribution are 6 and 4. The parameter n is
(A) 18
(B) 12
(C) 10
(D) 9
33. Let $f: R \rightarrow R$ be a defined by $f(x)=3 x-4$ then f^{-1} is
(A) $1 / 3(x+4)$
(B) $(x / 3)+4$
(C) $3 x+4$
(D) not defined
34. The solution of the differential equation $(x+y)^{2} \frac{d y}{d x}=a^{2}$ is given by-
(A) $(y+x)=a \tan \left(\frac{y-c}{a}\right)$
(B) $(y-x)=a \tan (y-c)$
(C) $(y-x)=\tan$

(D) $a(y-x)=\tan \frac{y-c}{a}$
35. The transformation which will transform the differential equation
$\frac{d z}{d x}+\frac{2 z x}{x^{2}+1} \log z=\frac{x z}{x^{2}+1}(\log z)^{3}$ to the form
dy
$+P(x) y=Q(x)$ is-
(A) $y=\log z$
(B) $y=\frac{1}{(\log z)^{2}}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(C) $y=\frac{z}{(\log z)^{2}}$
(D) $y=(\log z)^{2}$
36. If A is a square matrix, then A^{-1} exist iff-
(A) $|A|=0$
(B) $|A| \neq 0$
(C) $|A|>0$
(D) $|A|<0$
37. The square matrix A is nilpotent if-
(A) $A^{m}=I, m$ be any positive integer
(B) $A^{m}=0$
(C) $A^{m}=A$
(D) None of these
38. The value of $\iint_{R} x y(x+y) d x d y$ over the area between $x=y^{2}$ and $y=x$ is,
(A) $\frac{5}{56}$
(B) $\frac{9}{56}$
(C) $\frac{13}{56}$
(D)

56
39. The value of $\mathrm{I}=\int_{\sqrt{2} / 2}^{1} \int_{\sqrt{1-x^{2}}}^{\mathrm{x}} \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} d y \mathrm{dx}$. is

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $\ln (\sqrt{2}+1)-\frac{\pi}{4}$
(B) $\ln (\sqrt{2}+1)+\frac{\pi}{4}$
(C) $\ln (\sqrt{2}-1)-\frac{\pi}{4}$
(D) $\ln (\sqrt{2}-1)+\frac{\pi}{4}$
40. The value of $\int_{C}[(\cos x \sin y-x y) d x+\sin x \cos y d y]$, where C is the circle
$x^{2}+y^{2}=1$ is,
(A) 0
(B) 1
(C) 2
(D) none
41. Let U be an arbitrary non-empty set and S denote the set of all subsets of U. For $X, Y \in S$, if we define
$X+Y=\{x: x \in X$ or $x \in Y$ but $X \notin Y \cap Y\}$
and $X_{0} Y=X \cap Y$, then :
(A) $(S,+, 0)$ is a commutative ring without unity
(B) $(S,+, 0)$ is a commutative ring with unity and $X_{0} X=X$ for all $X \in S$
(C) For $X, Y, Z \in S . X_{0}(Y+X) \neq X_{0} Y+X_{0} Z$ and so $(S,+, 0)$ is not a ring
(D) S can be made a ring, if U and the null set ϕ are added to S.
42. Given

$$
3 \frac{d y}{d x}+\sqrt{y}=e^{0.1 x}, y(0.3)=5
$$

and using a step size of $h=0.3$ the best estimate of $\frac{d y}{d x}(0.9)$ using Euler's method is most nearly
(A) -0.37319

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(B) -0.36288
(C) -0.35381
(D) -0.34341
43. Which vector is perpendicular to the plane containing the three points $P(2,1,5), Q(-1,3,4)$, and $R(3,0,6)$?
(A) $2 \widehat{\mathbf{i}}-\widehat{\mathbf{j}}+\widehat{\mathbf{k}}$
(B) $\widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}+2 \widehat{\mathbf{k}}$
(C) $2 \widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}-\widehat{\mathbf{k}}$
(D) $\widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}+\widehat{\mathbf{k}}$
44. In how many ways can the letters of the word "PROBLEM" be rearranged to make 7 letter words such that none of the letters repeat?
(A) 7 !
(B) ${ }^{7} \mathrm{C}_{7}$
(C) 7^{7}
(D) 49
45. Let L be the set of all straight lines in the Euclidean plane. Two lines ℓ_{1} and ℓ_{2} are said to be related by the relation R iff ℓ_{1} is parallel to ℓ_{2}. Then the relation R is
(A) Only reflexive
(B) Only symmetric
(C) Only transitive
(D)Equivalence
46. If is the greatest of the definite integrals
$I_{1}=\int_{0}^{1} e^{-x} \cos ^{2} x d x, I_{2}=\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$
$I_{3}=\int_{0}^{1} e^{-x^{2}} d x I_{4}=\int_{0}^{1} e^{-x^{2} / 2} d x$, then

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $I=I_{1}$
(B) $I=I_{2}$
(C) $\mathrm{I}=\mathrm{I}_{3}$
(D) $I=I_{4}$
47. Let $f(x)$ be a function satisfying $f^{\prime}(x)=f(x)$ with $f(0)=1$ and $g(x)$ be the function satisfying $f(x)$ $+g(x)=x^{2}$. The value of integral $\int_{0}^{1} f(x) g(x) d x$ is equal to
(A) $\frac{1}{4}(\mathrm{e}-7)$
(B) $\frac{1}{4}(\mathrm{e}-2)$
(C) $\frac{1}{2}(\mathrm{e}-3)$
(D) None of these
48. Which one of the following is the incorrect statement?
(A) If a Linear programming problem (LPP) is infeasible, then its dual is also infeasible
(B) If an LPP is infeasible, then its dual always has unbounded solution
(C) If an LPP has unbounded solution, then its dual also has unbounded solution
(D) If an LPP has unbounded solution, then its dual is infeasible
49. A biased coin with probability $P, 0<P<1$ of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is $\frac{2}{5}$, then p equals
(A)
(B)

(C) $\frac{2}{5}$
(D) $\frac{3}{5}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
50. The number $1,2,3, \ldots, n$ are arranged in a random order. The probability that the digits 1,2 , $3, \ldots, k(k<n)$ appears as neighbours in that order, is
(A) $\frac{1}{n!}$
(B) $\frac{\mathrm{k}!}{\mathrm{n}!}$
(C) $\frac{(n-k)!}{n!}$
(D) none of these
51. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is
(A) $\frac{4}{5}$
(B) $\frac{3}{5}$
(C) $\frac{1}{5}$
(D) $\frac{2}{5}$
52. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
(A) $\frac{1}{2}$
(B) $\frac{1}{8}$
(C) $\frac{3}{8}$
(D) None of these
53. Finding the Lagrange interpolating polynomial of degree 2 by approximating the function $y=$ In x defined by the following table of values, the value of $\ln 2.7$ will be

x	2	2.5	3.0
$\mathrm{y}=\ln \mathrm{x}$	0.69315	0.91629	1.09861

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) 0.9941162
(B) 0.9941164
(C) 0.9941165
(D) 0.9941166
54. Using initial approximation $x_{0}=-1$, zero $x=-2$ of polynomial $P(x)=x^{5}+5 x^{4}-40 x^{2}-80 x-$ 48 is obtained by newton's method
Determine its order of convergence
(A) 1
(B) 2
(C) 3
(D) none
55. By false positioning the second approximation of a root of equation $f(x)=0$ is (where $\mathrm{x}_{0}, \mathrm{x}_{1}$ are initial and first approximation respectively)
(A) $x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
(B) $\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
(C) $\frac{x_{0} f\left(x_{0}\right)-x_{1} f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
(D)

56. The error in simpson's rule when approximating $\int_{1}^{3} \frac{d x}{x}$ is less than
(A)
(B) $\frac{1}{80}$
(C) $\frac{1}{70}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $\frac{1}{60}$
57. If for $n=4$ the approximate value of integral $\int_{1}^{9} x^{2} d x$ by trapezoidal rule is $2\left[\frac{1}{2}\left(1+9^{2}\right)+\alpha^{2}+\beta^{2}+7^{2}\right]$, then :
(A) $\alpha=1, \beta=3$
(B) $\alpha=2, \beta=4$
(C) $\alpha=3, \beta=5$
(D) $\alpha=4, \beta=6$
58. For finding real root of the equation $x^{2}-x=2$ by Newton-Raphson method, choose $x_{0}=1$, then value of x_{2} is:
(A) -1
(B) 3
(C) $\frac{11}{5}$
(D) None of these
59. If $u=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$, then $\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}=$
(A) $9 u$
(B) $9 u^{4 / 3}$
(C) $9 u^{2}$
(D) $u^{4 / 3}$
60. A minimum value of $\int_{0}^{x} t e^{-t^{2}} d t$ is
(A) 1
(B) 2
(C) 3
(D) 0

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

61. If $f(x+y)=f(x)$. $f(y)$ for all x and y and $f(5)=2$, $f^{\prime}(0)=3$, then $f^{\prime}(5)$ will be
(A) 2
(B) 4
(C) 6
(D) 8
62. $\int_{0}^{1000} e^{x=[x]} d x$ is
(A) $e^{1000}-1$
(B) $\frac{e^{1000}-1}{e-1}$
(C) 1000(e-1)
(D) $\frac{e-1}{1000}$
63. $\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\tan x}-\sqrt{\cot x}}$ is equal to
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) 0
(D) None of these
64. The value of the integral $\int_{0}^{2|x|}(x-[x]) d x$ is
(A) $[x]$
(B) $1 / 2[x]$
(C) $3[x]$
(D) $2[x]$
65. The area bounded by the curves $y=\ell n x, y=\ell n|x|, y=|\ell n x|$ and $y=|\ell n| x| |$ is
(A) 4 sq. unit
(B) 6 sq. unit

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) 10 sq. unit
(D) None of these
66. The area bounded by curves $y=\cos x$ and $y=\sin x$ and ordinates $x=0$ and $x=\frac{\pi}{4}$ is
(A) $\sqrt{2}$
(B) $\sqrt{2}+1$
(C) $\sqrt{2}-1$
(D) $\sqrt{2}(\sqrt{2}-1)$
67. Area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and line $x=2 a$ above x-axis is
(A) πa^{2}
(B) $\frac{3 \pi \mathrm{a}^{2}}{2}$
(C) $2 \pi a^{2}$
(D) $3 \pi \mathrm{a}^{2}$
68. Calculate the volume of the sofid bounded by the following surfaces $z=0, x^{2}+y^{2}=1, x+y+z=3$
(A) π
(B) 2π
(C) 3π
(D) 4π
69. Find the volume bounded by the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ and the planes $\mathrm{y}+\mathrm{z}=3$ and $\mathrm{z}=0$.
(A) 9π
(B) 12π
(C) 16π
(D) 20π
70. Solve $x \sin (y / x)(d y / d x)=y \sin (y / x)-x$.
(A) $\mathrm{Ce}^{\cos (y / x)}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(B) $\mathrm{Ce}^{\sin (y / x)}$
(C) $\mathrm{Ce}^{\mathrm{y} / \mathrm{x}}$
(D) none
71. Solve $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}$.
(A) $y=\frac{1}{3} x e^{-2 x}+\frac{c}{x} e^{-x}$
(B) $y=\frac{1}{2} x^{2} e^{-2 x}+\frac{c}{x} e^{-2 x}$
(C) $y=\frac{1}{2} x e^{-2 x}+\frac{c}{x} e^{-2 x}$
(D) None of these
72. The solution of the differential equation $x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x}$ is:
(A) $a x+b y=c$
(B) $a x^{2}+b y=0$
(C) $a x^{2}+b y^{2}=1$
(D) $a x+b y^{2}=0$
73. A particular integral of

(A) $e^{a x} \int\left[e^{(a-b x}\left(\int Q e^{b x} d x\right)\right] d x$
(B) $e^{a x} \int\left[e^{(b-a) x}\left(\int Q e^{-b x} d x\right)\right] d x$
(C) $e^{-a x} \int\left[e^{(b-a) x}\left(\int Q e^{b x} d x\right)\right] d x$
(D) $e^{-a x} \int\left[e^{(b-a) x}\left(\int Q e^{-b x} d x\right)\right] d x$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
74. Assertion (A) : The differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+5\right) y=e^{x}$ is a linear equation.

Reason (R): Every first degree equation is a linear equation.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true and R is not a correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
75. Find the P.I. of the differential equation

$$
\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}
$$

(A) $\frac{x^{3}}{3}$
(B) $\frac{1}{2} \frac{x^{3}}{3}$
(C) $\frac{x^{2}}{6}$
(D) None
76. Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \quad \sin 3 x=0$, and find the value of y when $x=\pi / 2$ if it is given that y
$=3$ and $d y / d x=0$ when $x=0$.
(A) $6 \cos 3 x-\sin 3 x$
(B) $3 \cos 3 x-3 \sin 3 x$
(C) $4 \cos 3 x-2 \sin 3 x$
(D) None of these
77. Find unit normal vector to $x y z=2$ at $(1,-1,2)$
(A) $\frac{1}{3}(2 \hat{i}-2 j-k)$
(B) $\left(3 x^{2}+2 x-1\right) \hat{i}$
(C) $x^{3}+x^{2}-x+2$
(D) $(x-1)(x-2)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
78. If $\phi=x z$, then its gradient is
(A) $z \hat{j}+y \hat{k}$
(B) $z \hat{k}+y \hat{i}$
(C) $\hat{i z}+x \hat{k}$
(D) 0
79. Find the directional derivative of $f=x^{2} y+x z$ at $(1,2,-1)$ in the direction

$$
\vec{A}=2 \hat{i}-2 \hat{j}+\hat{k} .
$$

(A) $\frac{5}{3}$
(B) $\frac{5}{4}$
(C) $\frac{5}{6}$
(D) $\frac{5}{7}$
80. The function f satisfies the functional equation $3 f(x)+2 f\left(\frac{x+59}{x-1}\right)=10 x+30$ for all real $x \neq 1$.

The value of $f(7)$ is
(A) 8
(B) 4
(C) -8
(D) 11
81. Direction : In each of the following questions, some letters or groups of letters are given all of which except one, share a common similarity while one is different. Choose the odd one out.
(A) DH6
(B) UO 18
(C) XP20
(D) NB10

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

82. Direction : In each of the following questions, a number series is given with one term missing. Choose the correct alternative that will continue the same pattern and replace the question mark in the given series.
The last 4 missing fractions in the series :
$\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, ?, ?, ?, ?$, are
(A) $\frac{1}{40}, \frac{1}{50}, \frac{1}{60}, \frac{1}{70}$
(B) $\frac{1}{42}, \frac{1}{56}, \frac{1}{62}, \frac{1}{90}$
(C) $\frac{1}{44}, \frac{1}{58}, \frac{1}{74}, \frac{1}{92}$
(D) $\frac{1}{41}, \frac{1}{55}, \frac{1}{72}, \frac{1}{90}$
83. In the word 'CONTRACTUAL, the positions of the first and the eleventh letters are interchanged. Similarly, the positions of the second and the tenth letters are interchanged, and so on, up to the positions of fifth and seventh letters are interchanged. Which letter will be the third to the right of the sixth letter from the left end?
(A) U
(B) N
(C) T
(D) A
84. In a shop, the items were arranged in a shelf consisting of six rows, Biscuits were arranged above the tins of chocolates but below the rows of packets of chips. Cakes were at the bottom and the bottles of peppermints were below the chocolates the topmost row had the display of jam bottles. Where exactly were the bottles of peppermints ? Mention the place from the top.
(A) 2nd

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) 3rd
(C) 4th
(D) 5 th
85. In a certain code BREAKTHROUGH is written as EAOUHRBRGHKT. How is DISTRIBUTION written in that code?
(A) RISTTIBUDION
(B) TISTBUONDRII
(C) STTIBUONRIDI
(D) STTIBUDIONRI
86. If 'black' means 'pink', 'pink' means 'blue', 'blue' means 'white', 'white' means 'yellow', 'yellow' means 'red' and 'red' means 'brown', then what is the colour'of clear sky?
(A) Brown
(B) Red
(C) Blue
(D) Pink
87. What will be the correct mathematical signs that can be inserted in the following equation?
(A) $\times,-,+, \quad \div$
(B) $\div, \div, \times,+,-$
(C),,$++ \div$
(D)
88. An airline has a certain free luggage allowance and charges for excess luggage at a fixed rate per kg . Two passengers Digvijay and Sankalp have 60 kg of luggage between them, and are charged Rs. 1,200 and Rs. 2,400 respectively for excess luggage. Had the entire luggage belonged to one of them, the excess luggage charge would have been Rs. 5,400. What is the weight of Sankalp's luggage?
(A) 20 kg
(B) 25 kg

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) 30 kg
(D) 35 kg
89. It takes 50 days to fill a laboratory dish with bacteria. If the size of the bacteria doubles each day, how long did it take for the bacteria to fill one half of the dish?
(A) 48 days
(B) 24 days
(C) 25 days
(D) 49 days
90. The tyre of automobile is inflated to lesser pressure in summer than in winter
(A) Because the pressure of gas decreases on increase in temperatures.
(B) Because the pressure of gas increases on decrease in temperatures.
(C) in order to avoid puncture.
(D) Because the pressure of gas increases on increase in temperature.
91. A Man was standing at the centre of a circular field. he go down south to the edge of the field and then turning the left he walks along the boundary of the field equal to three-eights of its length. Then he turn west and go right across to the opposite point on the boundary. In which direction he is from the starting point?
(A) North-west
(B) North
(C) South-west
(D) West
92. Pointing to a lady in the photograph Seema said, "Her son's father is the son-in-law of my mother. How is Seema related to that lady?
(A) Aunt
(B) Oousin
(C) Mother
(D) Sister
93. Mrs. Ranga has three children and has difficulty remembering their ages and the months of their birth. The clues below may help her remember

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

- The boy, who was born in June, is 7 years old
- Vaibhav is older than Suprita
- Suprita's brithday is in April
- One of the children is 4 years old, but it is not Anshuman
- One of the children was born in September, but it was not
- The youngest child is only 2 years old.

Based on the above clues, which one of the following Statements is true?
(A) Vaibhav is the oldest, followed by Anshuman who was born in September and the youngest is Suprita who was born in April.
(B) Anshuman is the oldest being born in June, followed by Suprita who is 4 years old and the youngest is Vaibhav who is 2 years old
(C) Vaibhav is the oldest being 7 years old, followed by suprita who was born in April, and the youngest is Anshuman who was born in September.
(D) Suprita is the oldest who was born in April, followed Yaibhav who was born in June, and Anshuman who was born in September.
94. A man can row 30 km upstream and 44 km downstream in 10 hours. It is also known that he can row 40 km upstream and 55 km downstream in 13 hours. Find the speed of the man in still water.
(A) $4 \mathrm{~km} / \mathrm{h}$
(B) $6 \mathrm{~km} / \mathrm{h}$
(C) $8 \mathrm{~km} / \mathrm{h}$
(D) $12 \mathrm{~km} / \mathrm{h}$
95. A lent Rs. 600 to B for 2 years and Rs. 150 to C for years and received altogether from both Rs. 90 as interest. Find the rate of interest, simple interest being calculated.
(A) 5%
(B) 16%
(C) 6%
(D) 4.5%

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
96. A and B together can complete a piece of work in 35 days while A alone can complete the same work in 60 days. In how many days, B alone will be able to complete the same work ?
(A) 84 days
(B) 83 days
(C) 85 days
(D) 90 days
97. Find the next term in the series, $210,195,175,150,120$,
(A) 90
(B) 75
(C) 80
(D) 85
98. Find the next term in the series, $2,5,26,677$,
(A) 17803
(B) 13576
(C) 458329
(D) 458330
99. Find the missing term from the following series -

256, 512, 1024,, 4096, 8192
(A) 3528
(B) 2786
(C) 2882
(D) 2048
100. By selling an article for Rs 200 a man gains Rs 20 , what is his gain \% ?

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) $11 \frac{4}{9} \%$
101. main()
\{
float $a=5, b=2$;
int c ;
$\mathrm{c}=\mathrm{a} \% \mathrm{~b}$;
printf ("\%d", c)
\}
O / P of the above program is
(A) $2 \cdot 5$
(B) 1
(C) 1.0000
(D) Error
102. If there are 32 segments each at size 1 kb , logical address will have
(A) 11 bits
(B) 13 bits
(C) 15 bits
(D) 14 bits
103. Using the Octal notation write the BCD coding for the G. in reference to word DIGIT
(A) 64
(B) 71
(C) 67
(D) 23
104. The character c ' $=$ ' z ' would store in ch
(A) The character z
(B) ASCll of z
(C) z along with single inverted comma
(D) Both A \& B

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

105. The binary code of $(73)_{10}$ is
(A) 1010001
(B) 1000100
(C) 1100101
(D) 1001001
106. The operation which is commutative but not associative is
(A) AND
(B) $O R$
(C) EX-OR
(D) NAND
107. Minimize the Boolean function $y=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D+A \cdot B \cdot \bar{C} \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{C} \cdot D$
(A) $\bar{B} \cdot \bar{C}$
(B) $\overline{\mathrm{A}} \cdot \overline{\mathrm{C}}$
(C) A and B both
(D) None of them
108. Converting ${ }^{42}(10)$ into $B C D$
(A) 01000010
(B) 000010
(C) 01010100
(D) 00010001
109. Match the following

List 1
(a) Data dictionary contains details of
(b) Actigram represents
(c) Primary tool in structured design
(d) Graphic representation of information system

List II
(1) DFD

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(2) Structure chart
(3) Processor activities, methods \& procedures in DFD.
(4) Data structures

	(a)	(b)	(c)	(d)
(A)	(3)	(2)	(1)	(4)
(B)	(3)	(1)	(2)	(2)
(C)	(2)	(3)	(4)	(1)
(D)	(4)	(3)	(2)	(1)

110. Find a's complement of decimal number. 2059.84.
(A) 9470.51
(B) 4970.51
(C) 9740.15
(D) 7940.15
111. What is the output for the following ' c ' code ?

> int $p=51$;
> $p=p \ll 2 ;$
> printf ("\%d", p);
(A) 200
(B) 204
(C) 208
(D) 280
112. What will be the Qutput for the following ' c ' code
void main()
int $a=10, b=20$;
char $x=1, y=0$;
if (a, b, x, y)
\{
printf ("xyz");

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

```
}
}
```

(A) $X Y Z$ is printed
(B) Compiler error
(C) Nothing is printed
(D) Semantic error
113. Minimization of $A B+\overline{A C}+A \bar{B} C(A B+C)$ is
(A) 0
(B) 1
(C) X
(D) $X Y$
114. Binary value for the multiplication of (7) and (7) will be :-
(A) 100011_{2}
(B) 110101_{2}
(C) 110001_{2}
(D) 111001_{2}
115. The equivalent decimal number of the hexadecimal number 5 A 9 is .
(A) 1449
(B) 1280
(C) 1472
(D) None of these
116. The Boolean expression
$A^{\prime} B E+B C D E+B C^{\prime} D^{\prime} E+A^{\prime} B^{\prime} D E^{\prime}+B^{\prime} C^{\prime} D E^{\prime}$
can be simplified to $\mathrm{BE}+\mathrm{B}^{\prime} \mathrm{DE}$ ', if the don't care conditions are
(A) $A B C D E+A B^{\prime} C D E '$
(B) $A B C D+A B^{\prime} C D E^{\prime}+A B C D^{\prime} E$
(C) $A B C^{\prime} D E+A B^{\prime} C D E^{\prime}+A B C D^{\prime} E$
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
117. How many NAND gate are required to form NOR gates?
(A) 2 units
(B) 3 units
(C) 4 units
(D) 5 units
118. $\mathrm{Z}=$?

(A) $(\overline{\mathrm{A}}+\overline{\mathrm{B}})(\overline{\mathrm{C}}+\overline{\mathrm{D}})(\mathrm{E}+\mathrm{F})$
(B) $A B+C D+E F$
(C) $(A+B)(C+D)(E+F)$
(D) $\overline{\mathrm{AB}}+\overline{\mathrm{CD}}+\overline{\mathrm{EF}}$
119. What will be the output for the following 'c' fragment?

$$
\begin{aligned}
& \text { int } a=10, b=20 ; \\
& \text { printf ("\%d", } a=b \text {); }
\end{aligned}
$$

(A) Outputs on error message
(B) Prints 0
(C) Prints 1
(D) None of the above

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

120. What will be the values for ' g ' \& ' z ' atleast for the following given ' c ' code ?

$$
\begin{aligned}
& \text { main () } \\
& \quad \begin{array}{l}
\text { int } x, y, z ; \\
x=10 \\
y=3^{*}(x++) ; \\
z=3^{*}(++x)
\end{array} \\
& \}
\end{aligned}
$$

(A) $y=33, z=36$
(B) $y=30 \quad, z=33$
(C) $y=30 \quad, z=36$
(D) $y=33 \quad, z=39$

ANSWER KEY

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

CLASSES

HINTS AND SOLUTION

1.(D)

$$
\begin{aligned}
& A^{*} I=\frac{1}{2}(A I+I A)=\frac{1}{2}(A+A) \\
&=\frac{2 A}{A}=A \\
& \therefore A^{*} I=A \quad \therefore(a) \text { holds } . \\
& A^{*} A=\frac{1}{2}(A A+A A)=\frac{1}{2}\left(A^{2}+A^{2}\right)=A^{2}
\end{aligned}
$$

\therefore (b) holds.
(c) $A * B=\frac{1}{2}(A B+B A)$
$B^{*} A=\frac{1}{2}(B A+A B)=\frac{1}{2}(A B+B A)$
[\therefore addition is commutative]
$\therefore A * B=B * A \quad \therefore$ (c) holds.

$$
\begin{aligned}
A^{*}(B+c)=\frac{1}{2} & (A(B+C)+(B+C) A) \\
& \left.=\frac{1}{2}(A B+A C+B A+C A)\right) \\
& =\frac{1}{2}(A B+B A)+\frac{1}{2}(A C+C A)
\end{aligned}
$$

2.(A) Let λ, μ and $\lambda^{\prime}, \mu^{\prime}$ be the number of heads and tails thrown by A and B respectively,
so that $\lambda+\lambda^{\prime}=n+1$ and $\mu+\mu^{\prime}=n$.
The required probability P is the probability of the inequality $\lambda>\mu$. The probability $1-P$
of the opposite event $\lambda \leq \mu$ is at the same time the probability of the inequality $\lambda^{\prime}>\mu^{\prime}$ i.e.,
is the probability that A will throw more tails than B.
[Reason : $\lambda \leq \mu \Rightarrow \mathrm{n}+1-\lambda^{\prime} \leq \mathrm{n}-\mu^{\prime} \Rightarrow 1-\lambda^{\prime} \leq-\mu^{\prime} \Rightarrow \lambda^{\prime}-1 \geq \mu^{\prime} \Rightarrow \lambda^{\prime} \geq \mu^{\prime}+1>\mu^{\prime}$]
By symmetry $1-\mathrm{P}=\mathrm{P}$ or $\mathrm{P}=\frac{1}{2}$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
3.(C) Since the system has a non - trivial solution.

$$
\begin{array}{ll}
\therefore & \left|\begin{array}{ccc}
\lambda & \sin \alpha & \cos \alpha \\
1 & \cos \alpha & \sin \alpha \\
-1 & \sin \alpha & -\cos \alpha
\end{array}\right|=0 \\
\Rightarrow \quad\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)-(-\sin \alpha \cos \alpha-\sin \alpha \cos \alpha)-1\left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)=0 \\
\Rightarrow & -\lambda+2 \sin \alpha \cos \alpha+\cos 2 \alpha=0 \\
\Rightarrow & \lambda=\cos 2 \alpha+\sin 2 \alpha=0 \\
& =\sqrt{2} \cos \left(2 \alpha-\frac{\pi}{4}\right) \\
\text { Since } \quad-1 \leq \cos \left(2 \alpha-\frac{\pi}{4}\right) \leq 1 \quad \forall \alpha \in \mathrm{R} \\
\therefore \quad & -\sqrt{2} \leq \lambda \leq \sqrt{2} \text { i.e } \lambda \in[-\sqrt{2}, \sqrt{2}] \quad
\end{array}
$$

$\therefore \quad$ (c) is the correct answer.
4.(A) Since $\bar{E}_{1} \cap \bar{E}_{2}=\overline{\bar{E}_{1} \cup E_{2}}$ and $\left(\bar{E}_{1} \cap \bar{E}_{2}\right) \cap\left(\overline{E_{1} \cup E_{2}}\right)$

$$
P\left\{\left(E_{1} \cup E_{2}\right) \cap\left(\bar{E}_{1} \cap \bar{E}_{2}\right)\right\}=P(\phi)=0
$$

$0<1 / 4$ implies that it can have value in that inverval.
5.(A) From the given colditions we can make a triangle in 3 ways :
(i) Taking any two points from the first straight line and the remaining one point from the remaining 6 points.
(ii) Taking any two points from the second straight line and the remaining one point from the remaining 6 points.
(iii) Taking the isolated point and any one from the first straight line and any one from the second straight line.
Now calculate and add the number of ways in three cases to get the final answer.
6.(B) Total ways $=\left({ }^{8} C_{2}-2\right) \times \underline{6}$

$$
\begin{aligned}
& =(28-2) \times \underline{6} \\
& =26 \times \underline{6}
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
7.(B)

$$
\begin{aligned}
\left(\alpha^{-1} \beta\right)^{-1} & =\beta^{-1}\left(\alpha^{-1}\right)^{-1} \\
& =\beta^{-1} \alpha\left[\text { because }\left(\alpha^{-1}\right)=\alpha\right]
\end{aligned}
$$

8.(D)

$$
\begin{aligned}
& \mathrm{T}_{5}^{2}=\mathrm{T}_{5} \cdot \mathrm{~T}_{5}=\mathrm{T}_{5}(\mathrm{y}, \mathrm{y}-\mathrm{x})=(\mathrm{y}-\mathrm{x},-\mathrm{x})=\mathrm{T}_{4} \\
& \mathrm{~T}_{5}^{3}=\mathrm{T}_{4} \cdot \mathrm{~T}_{5}=\mathrm{T}_{4}(\mathrm{y}, \mathrm{y}-\mathrm{x})=(-\mathrm{x},-\mathrm{y} \cdot)=\mathrm{T}_{3} \\
& \mathrm{~T}_{5}^{4}=\mathrm{T}_{3} \cdot \mathrm{~T}_{5}=\mathrm{T}_{3}(\mathrm{y}, \mathrm{y}-\mathrm{x})=(-\mathrm{y}, \mathrm{x}-\mathrm{y})=\mathrm{T}_{2} \\
& \mathrm{~T}_{5}^{5}=\mathrm{T}_{2} \cdot \mathrm{~T}_{5}=\mathrm{T}_{2}(\mathrm{y}, \mathrm{y}-\mathrm{x})=(\mathrm{x}-\mathrm{y}, \mathrm{x},)=\mathrm{T}_{1} \\
& \mathrm{~T}_{5}^{6}=\mathrm{T}_{1} \cdot \mathrm{~T}_{5}=\mathrm{T}_{1}(\mathrm{y}, \mathrm{y}-\mathrm{x})=(\mathrm{x}, \mathrm{y})=\mathrm{I} \\
& \begin{aligned}
\therefore \quad \mathrm{G} & =\left\{\mathrm{I}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}\right\} \\
& =\left\{\mathrm{T}_{5}^{6}, \mathrm{~T}_{5}^{5}, \mathrm{~T}_{5}^{4}, \mathrm{~T}_{5}^{3}, \mathrm{~T}_{5}^{2}, \mathrm{~T}_{5}^{1}\right\}
\end{aligned}
\end{aligned}
$$

$\therefore \mathrm{T}_{5} \quad$ is the generator of the given transformations.
9.(A) If α, β are the roots of the given equation, then

$$
\alpha+\beta=p \text { and } \alpha \beta=q
$$

By the given condition,

$$
\begin{aligned}
\alpha+\beta & =m(\alpha-\beta) \\
\Rightarrow \quad(\alpha+\beta)^{2} & =m^{2}(\alpha-\beta)^{2} \\
\Rightarrow \quad(\alpha+\beta)^{2} & =m^{2}\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]
\end{aligned}
$$

$$
\Leftrightarrow p^{2}=m^{2}\left[p^{2}-4 q\right]=p^{2} m^{2}-4 m^{2} q
$$

$$
\mathrm{p}^{2}\left(\mathrm{~m}^{2}-1\right)=4 \mathrm{~m}^{2} \mathrm{q}
$$

10.(B) The circles pass through the pole and have their centres on the initial line and have diameters of lengths 2 a and 4 a . The answer to the question will be

$$
\pi\left(r_{2}^{2}-r_{1}^{2}\right)=\pi(4-1) \mathrm{a}^{2}=3 \pi \mathrm{a}^{2}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Fig.
Finding it by integration, using the polar formula for area

$$
A=2 \frac{1}{2} \int_{0}^{\pi / 2}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta
$$

(As there is symmetry about initial line)

$$
\begin{aligned}
& A=a^{2} \int_{0}^{\pi / 2} 4(4-1) \cos ^{2} \theta d \theta \\
& =12 \mathrm{a}^{2} \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta=\frac{12 \mathrm{a}^{2}}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{-\pi /}
\end{aligned}
$$

$$
=\frac{12 \mathrm{a}^{2}}{2}\left[\frac{\pi}{2}-0\right]=3 \pi \mathrm{a}^{2}
$$

11.(B)

$$
I=\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

$$
I=\int_{x=0}^{a}\left[\frac{\sqrt{a^{2}-x^{2}-y^{2}}}{2}+\frac{a^{2}-x^{2}}{2} \sin ^{-1} \frac{y}{\sqrt{a^{2}-x^{2}}}\right]_{0}^{\sqrt{a^{2}-x^{2}}} d x
$$

$$
=\int_{x=0} 0+\frac{a^{2}-x^{2}}{2} \frac{\pi}{2} d x=\frac{\pi}{4}\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a}=\frac{\pi}{6} a^{3}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
12.(C) The projection of the cone of the $z=0$ plane is $x^{2}+y^{2}=0 \Rightarrow(0,0)$. The projection of the sphere is the circle $x^{2}+y^{2}=1$

$$
\text { So } \quad \begin{aligned}
I & =4 \int_{0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \int_{z=\sqrt{x^{2}+y^{2}}}^{\sqrt{1-\left(x^{2}+y^{2}\right)}} z d x d y d z \\
& =4 \int_{0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}}\left[\frac{z^{2}}{2}\right]_{\sqrt{x^{2}+y^{2}}}^{\sqrt{1-\left(x^{2}-y^{2}\right)}} d x d y
\end{aligned}
$$

$$
=2 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}-x^{2}-y^{2}\right) d x d y
$$

$$
=2 \int_{0}^{1}\left[\left(1-2 x^{2}\right) y-\frac{y^{3}}{3}\right]_{0}^{\sqrt{1-x^{2}}} d x
$$

$$
=2 \int_{0}^{1} \sqrt{1+x^{2}}\left\{1-2 x^{2}-\frac{1-x^{2}}{3}\right\} d x \operatorname{Let} x=\sin
$$

$$
=\frac{2}{3} \int_{0}^{\pi / 2} \cos \theta\left(2-5 \sin ^{2 \theta}\right) \cos \theta d \theta
$$

13.(A) The curve is symmetrical about x-axis, as the power of y is even. Also putting $y=0$ we find that the loop extends from $x=a$ to $x=2 a$.
\therefore The required volume $=\int_{\mathrm{x}=\mathrm{a}}^{2 \mathrm{a}} \pi \mathrm{y}^{2} \mathrm{dx}=\frac{\pi}{\mathrm{a}^{2}} \int_{\mathrm{a}}^{2 \mathrm{a}} \mathrm{x}^{2}(2 \mathrm{a}-\mathrm{x})(\mathrm{x}-\mathrm{a}) \mathrm{dx}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& =\frac{\pi}{a^{2}} \int_{a}^{2 a} x^{2}\left(-x^{2}+3 a x-2 a^{2}\right) d x=\frac{\pi}{a^{2}} \int_{0}^{2 a}\left(-x^{4}+3 a x^{3}-2 a^{2} x^{2}\right) d x \\
& =\frac{\pi}{a^{2}}\left[-\frac{1}{5} x^{5}+\frac{3}{4} a x^{4}-\frac{2}{3} a^{2} x^{3}\right]_{a}^{2 a} \\
& =\left(\pi / a^{2}\right)\left[\left\{(-32 / 5) a^{5}+12 a^{5}-(16 / 3) a^{5}\right\}-\left(-\frac{1}{5} a^{5}+\frac{3}{4} a^{5}-\frac{2}{3} a^{5}\right)\right] \\
& =\pi a^{3}\left[(-32 / 5)+12-(16 / 3)+\frac{1}{5}-\frac{3}{4}+\frac{2}{3}\right]=(23 / 60) \pi a^{3}
\end{aligned}
$$

14.(B) After drawing a graph we get the vertices of feasible region as (1, 0), (10,0$),(2,4),(0,4)$ and (0,1).

Thus minimum value of the objective function is at $(0,1)$ Hence $z=0 \times 2+1 \times 1=1$
15.(D) The graph of linear programming problem is as given below

Hence the required feasible region is given by the graph whose vertices are A (1.2, 2.6),
B $(4.5,1.5)$ and C. $\left(\frac{8}{3}, \frac{10}{3}\right)$
Thus objective function is minimum at $A(1.2,2.6)$ so $X_{1}=1.2, \mathrm{X}_{2}=2.6$ and $\mathrm{z}=$

$$
2 \times 1.2+3 \times 2.6=10.2
$$

16.(C) Solving $2 x+3 y=6$ and $x+4 y=4$, we get $. x=\frac{12}{5}$, y $\frac{2}{5}$

Hence a vertex is $\left(\frac{12}{5}, \frac{2}{5}\right)$.
17.(A) (i) This question can be also be solved by one student
(ii) This question can be also be solved by two students simultaneously
(iii) This question can be also be solved by three students all together.
$P(A)=\frac{1}{2}, P(B)=\frac{1}{4}, P(C)=\frac{1}{6}$
$P(\mathrm{~A} \cup \mathrm{~B} \cup \mathrm{C})=P(A)+P(B)+P(C)-[P(A) \cdot P(B)+P(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{C}) \cdot \mathrm{P}(\mathrm{A})]+[P(A)$.
$P(B) \cdot P(C)]$
$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}-\left[\frac{1}{2} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{2}\right]+\left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6}\right]=\frac{33}{48}$
18.(B) Let 100 students are studying in which 60% are Girls and 40% are Boys.

Boys $=40$, Girls $=60$
25% of Boys offer Maths $=\frac{25}{100} \times 40=10$ Boys
10% of girls offer Maths

$$
=\frac{10}{100} \times 60=6 \text { Girls }
$$

It means, 16 students offer maths.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
\therefore Required probability $=\frac{6}{16}=\frac{3}{8}$.
19.(A) Let p_{1}, p_{2} be the chances of happening of the first and second events respectively, then according to the given conditions, we have

$$
\begin{aligned}
& \mathrm{p}_{1}
\end{aligned}=\mathrm{p}_{2}^{2} \text { and } \frac{1-\mathrm{p}_{1}}{\mathrm{p}_{1}}=\left(\frac{1-\mathrm{p}_{2}}{\mathrm{p}_{2}}\right)^{3} .
$$

20.(C) Given that $u=r^{m}$
and $\quad r^{2}=x^{2}+y^{2}+z^{2}$
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}=m r^{m-1} \frac{x}{\cdot r}=m x r^{m-2}$
(ii)

Again $\quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(m x r^{m-2}\right) \quad=m .\left(1 \cdot r^{m-2}+x(m-2) r^{m-3} \frac{\partial r}{\partial x}\right)$
$\frac{\partial^{2} u}{\partial x^{2}}=m\left[r^{m-2}+x^{2}(m-2) r^{m-4}\right]$
Similarly
$\frac{\partial^{2} u}{\partial y^{2}}=m\left[r^{m-2}+y^{2}(m-2) r^{m-4}\right]$
and $\frac{\partial^{2} u}{\partial z^{2}}=m\left[r^{m-2}+z^{2}(m-2) r^{m-4}\right]$
Adding(iii), (iv) and (v), we get $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$
$\frac{\partial^{2} u}{\partial y^{2}}=m\left[r^{m-2}+y^{2}(m-2) r^{m-4}\right]$
and $\frac{\partial^{2} u}{\partial z^{2}}=m\left[r^{m-2}+z^{2}(m-2) r^{m-4}\right]$ \qquad

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Adding (iii), (iv) and (v), we get

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

$=m\left[3 r^{m-2}+\left(x^{2}+y^{2}+z^{2}\right)(m-2) r^{m-4}\right]=m\left[3 r^{m-2}+(m-2) r^{m-2}\right]$
$=m(m+1) r m-2$
21.(D) The given function is a straight line. So there is no maxima or minima.
22.(B) Required area $=\int_{0}^{1} \tan ^{-1} x d x$

Put $x=\tan \theta$
$\Rightarrow \mathrm{dx}=\sec ^{2} \theta \mathrm{~d} \theta$
$=\int_{0}^{\pi / 4} \theta \sec ^{2} \theta \mathrm{~d} \theta \quad=(\theta \cdot \tan \theta)_{0}^{\pi / 4}-\int_{0}^{\pi / 4} 1 \cdot \tan \theta \mathrm{~d} \theta$
$=\frac{\pi}{4} \tan \frac{\pi}{4}[\log (\sec \theta)]_{0}^{\pi / 4}$
$=\frac{\pi}{4}-(\log \sqrt{2}-\log 1)=\frac{\pi}{4}-\log \sqrt{2}$
23.(B) The equation of the given curves are

$$
\begin{align*}
& y^{2}=9 x \tag{i}\\
& x-y+2=0 \tag{ii}
\end{align*}
$$

The curves (i) and (ii) intersect at $A(1,3)$ and $B(4,6)$

$\therefore \quad$ The required area
$A=\int_{1}^{4} \int_{x+2}^{3 \sqrt{x}} d y d x=\int_{1}^{4}[y]_{x+2}^{3 \sqrt{x}} d x=\int_{1}^{4}[3 \sqrt{x}-(x+2)] d x$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=\left[2 x^{3 / 2}-\frac{1}{2} x^{2}-2 x\right]_{1}^{4}=(16-8-8)-\left(2-\frac{1}{2}-2\right)=\frac{1}{2}
$$

24.(D) The given curve is $y=x+1$

This represents a straight line.

$\therefore \quad$ The required volume

$$
V=\pi \int_{0}^{2} y^{2} d x=\pi \int_{0}^{2}(x+1)^{2} d x=\pi \int_{0}^{2}\left(x^{2}+2 x+1\right) d x=\pi\left[\frac{x^{3}}{3}+x^{2}+x\right]_{0}^{2}=\frac{26 \pi}{3}
$$

25.(D) The given equation can be written as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y\left(\frac{\left.y \sin \frac{y}{x}+x \cos \frac{y}{x}\right)}{x\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right)}\right.}{\left.\frac{y}{x}\right)} \tag{1}
\end{equation*}
$$

This is a homogeneous equation. Thus putting

$$
y=v x .
$$

$$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$$

From(1)
$\therefore \quad v+x \frac{d v}{d x}=\frac{v x(v x \sin v+x \cos v)}{x(v x \sin v-x \cos v)}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\therefore \quad x \frac{d v}{d x}=\frac{2 v \cos v}{v \sin v-\cos v}$
or, $\left(\tan v-\frac{1}{v}\right) d v=2 \frac{d x}{x}$
on integrating, the required solution is
$\log \sec v-\log v=2 \log x+\log k$
or, $\quad \log \sec v=\log \left(v x^{2} k\right)$
or, $\quad \sec v=v x^{2} k$
or, $\quad \sec \frac{y}{x}=k x y$
or, $\quad x y \operatorname{cosy} / x=1 / k=C$ (say)
26.(D) $\quad \cot y \operatorname{cosec} y \frac{d y}{d x}+\frac{1}{x} \operatorname{cosec} y=\frac{1}{x^{2}}$

Put $\operatorname{cosec} y=v$
$\Rightarrow \operatorname{cosec} y \cot y \frac{d y}{d x}=\frac{-d v}{d x}$
$\therefore \quad \frac{-d v}{d x}+\frac{1}{x} y=\frac{1}{x^{2}}$
$\frac{d v}{d x}-\frac{1}{x} y=-\frac{1}{x^{2}}$

$=e^{-\log x .=\frac{1}{x}}$
$v \cdot \frac{1}{x}=\int-\frac{1}{x^{2}} \cdot \frac{1}{x} d x=\frac{1}{2 x^{2}}+C$
$2 x=1+2 C x^{2}$
$2 x \operatorname{cosec} y=2 C x^{2}+1$
27.(A) The A.E. of the given d.e. is $-m^{2}-m-2=0$

$$
\Rightarrow \quad m=1, m=-2
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
\therefore C.F. is $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-2 \mathrm{x}}$
and P.I. $=\frac{1}{D^{2}+D-2} e^{x}=x \cdot \frac{1}{2 D+1} e^{x}$
$=x \frac{1}{2+1} \mathrm{e}^{\mathrm{x}}=\frac{1}{3} \mathrm{xe} \mathrm{e}^{\mathrm{x}}$
\therefore Required solution is
$y=C_{1} e^{x}+C_{2} e^{-2 x}+\frac{1}{3} x e^{x}$
28.(A) $\frac{1}{D^{2}+D+1} \sin x$
$=\frac{1}{-1^{2}+D+1} \sin x$
$=\frac{1}{D} \sin x=-\cos x$.
29.(C) Rationalizing the degree 0 differential equation (dye.) we see that
$y+x\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left(\frac{d^{3} y}{d x^{3}}\right)^{4}$
Hence the degree of given d.e. is 4
30.(C) Let

be four elements of V, if a, b, c, d are scalars such that

$$
\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma+\mathrm{d} \delta=\overrightarrow{0}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow \mathrm{a}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+\mathrm{d}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ $=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
$\Rightarrow \mathrm{a}=0, \mathrm{~b}=0, \mathrm{c}=0, \mathrm{~d}=0$
Hence, α, β, γ, and δ are linearly independent
Let $\left[\begin{array}{l}a b \\ c d\end{array}\right]$ be any vector in V, then we can write $\left[\begin{array}{l}a b \\ c d\end{array}\right]=a \alpha+b \beta+c \gamma+d \delta$
$\therefore S=\{\alpha, \beta, \gamma, \delta\}$ is linearly independent and $L(S)=$
$\therefore \mathrm{S}$ is a basis of V.S.containing 4 elements.
$\therefore \operatorname{dim}$ of $S=4$
31.(C) Let $\vec{a}+\vec{b}+\vec{c}=0$

Now take cross product of both side by \vec{b}, we get
$\vec{a} \times \vec{b}+\vec{b} \times \vec{b}+\vec{c} \times \vec{b}=0$
or,
or, $\vec{a} \times \vec{b}=-\vec{c} \times \vec{b}$ $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}$

Similarly $\quad \vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
hence $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
Let us consider $[\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot \vec{b} \times \vec{c}$

$$
\begin{aligned}
& =\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \\
& =0
\end{aligned}
$$

$\therefore \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ are coplanar
32.(A) Given $n p=6 n p q=4$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\therefore \frac{\mathrm{npq}}{\mathrm{np}}=\frac{4}{6} \Rightarrow \mathrm{q}=\frac{2}{3} \mathrm{and} \mathrm{p}=\frac{1}{3}$
$\because \mathrm{np}=6 \Rightarrow \mathrm{n} \times \frac{1}{3}=6 \Rightarrow \mathrm{n}=18$.
33.(A) $f(x)=3 x-4=y$ (let)
$\operatorname{Now} f(x)=y \Rightarrow x=\frac{y+4}{3} \Rightarrow f^{-1}(x)=\frac{4+x}{3}$
34.(A) Let $x+y=v$
$\Rightarrow 1+\frac{d y}{d x}=\frac{d v}{d x}$
$\Rightarrow 1+\frac{a^{2}}{v^{2}}=\frac{d v}{d x}$
$\therefore \quad \int \frac{\mathrm{v}^{2}}{\mathrm{a}^{2}+\mathrm{v}^{2}} \mathrm{dv}=\mathrm{x}+\mathrm{c}$
or, $\quad \int\left(1-\frac{a^{2}}{a^{2}+v^{2}}\right) d v=x+c$
or, $\quad v-\frac{a^{2}}{a} \tan ^{-1} \frac{v}{a}=x+c$
or,
$x+y-a \tan ^{-1} \frac{x+y}{a}=x+c$
or,
or,

$$
y+x=a \tan \left(\frac{y-c}{a}\right)
$$

35.(B) Divide the d.e. by $z(\log z)^{3}$ we get
$\frac{1}{z(\log z)^{3}} \frac{d z}{d x}+\frac{2 x}{x^{2}+1} \cdot \frac{1}{(\log z)^{2}}=\frac{x}{x^{2}+1}$
Put

$$
y=\frac{1}{(\log z)^{2}}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \frac{d y}{d x}= \\
& -\frac{2}{(\log z)^{3}} \cdot \frac{1}{z} \cdot \frac{d z}{d x} \\
\therefore \quad & =-\frac{1}{z(\log z)^{3}} \frac{d z}{d x}=\frac{1}{2} \cdot \frac{d y}{d x}
\end{aligned}
$$

\therefore Differential equation becomes

$$
\begin{array}{ll}
& \frac{1}{2} \frac{d y}{d x}-\frac{2 x}{x^{2}+1} \cdot y=-\frac{x}{x^{2}+1} \\
\text { or, } & \frac{d y}{d x}-\frac{4 x}{x^{2}+1} \cdot y=-\frac{2 x}{x^{2}+1}
\end{array}
$$

Which is a linear equation
\therefore Transform required is

$$
y=\frac{1}{(\log z)^{2}}
$$

36.(B) $\quad A^{-1}$ exist $\Leftrightarrow A$ is non-singular $\Leftrightarrow|A| \neq 0$
37.(B) For positive integer, square matrix A is nilpotent $\Rightarrow A^{m}=0$.
38.(D) The region of integration is OAB. On solving the equations of two curves, we have

$$
\begin{aligned}
& y=x=y^{2} \\
& y=0 ; \quad y=1
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Fig.
\therefore The two points of intersection are $\mathrm{O}(0,0)$ and $\mathrm{B}(1,1)$
Limit of integrations are, on the strips PQ parallelto y axis y varies from line
$y=x$ to parabola $y^{2}=x$.
limits of y are from $y=x$ to $y=\sqrt{x}$
and then the minimum value of x is 0 and maximum value of x is 1 for the given region. So the integral reduces to

$$
=\int_{0}^{1} \int_{x=x}^{\sqrt{x}} x y(x+y) d x d y=\int_{0}^{1}\left(\frac{x^{2} y^{2}}{2}+\frac{x y^{3}}{3}\right)_{x}^{\sqrt{x}} d x
$$

$$
\begin{aligned}
& =\int_{0}\left(\frac{x^{2} x}{2}+\frac{x x^{3 / 2}}{3}-\frac{x^{4}}{2}-\frac{x^{4}}{3}\right) d x=\left(\frac{x^{4}}{8}+\frac{2}{7} \cdot \frac{x^{7 / 2}}{3}-\frac{x^{5}}{10}-\frac{x^{5}}{15}\right)_{0}^{1} \\
& =\frac{1}{8}+\frac{2}{21}-\frac{1}{10}-\frac{1}{15},=\frac{1}{8}-\frac{3}{30}-\frac{2}{30}+\frac{2}{21},=\frac{1}{8}-\frac{1}{6}+\frac{2}{21} \\
& =\frac{6-8}{48}+\frac{2}{21}=\frac{2}{21}-\frac{1}{24}=\frac{48-21}{21 \times 24}=\frac{3}{7 \times 8} .=\frac{3}{56}
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
39.(A) The region of integration consists of all points in the first quadrant above the circle $\mathrm{x}^{2}+$ $y^{2}=1$ and under the line $y=x$. Transform to polar coordinates, nothing that $x=1$ is equivalent to $r=\sec \theta$.

$$
\left.\mathrm{I}=\int_{0}^{\pi / 4} \int_{1}^{\sec \theta} \frac{1}{r} \cdot \mathrm{rdrd} \theta=\int_{0}^{\pi / 4} \int_{1}^{\sec \theta} \mathrm{drd} \theta=\int_{0}^{\pi / 4}(\sec \theta-1) \mathrm{d} \theta=(\ln |\sec \theta+\tan \theta|-\theta)\right]_{0}^{\pi / 4}=\ln (\sqrt{2}+1)-\pi / 4
$$

40.(A) We know that the Green's theorem in Cartesian form is .

$$
\int_{C}\left(F_{1} d x+F_{2} d y\right)=\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

Hence $F_{1}=\cos x \sin y-x y$ and $F_{2}=\sin x \cos y$
$\therefore \frac{\partial \mathrm{F}_{1}}{\partial \mathrm{y}} \quad=\cos x \cos y-x$ and $\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{x}}=\cos x \cos y$
Hence by (i) the given line integral.
$=\iint_{s}[\cos x \cos y-(\cos x \cos y-x)] d x d y$,
where S is the area of the circle bounded by C i.e. the circle $x^{2}+y^{2}=1$.

$=2 \int_{-1}^{1} x \sqrt{\left(1-x^{2}\right)} d x=2\left[-\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}\right]_{-1}=0$.
41.(B) If we take U be an arbitrary non-empty set, S denote the set of all subsets of U, for X, $Y \in S$, if we define $X+Y=\{x: x \in X$ or $x \in Y$ but $x \notin X \cap Y\}$, then $(S,+, 0)$ will be commutative ring with unity and $X_{0} X=X$ for all $X \in S$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
42.(B) First rewrite the differential equation in the proper form

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{3}\left(e^{0.1 x}-\sqrt{y}\right) \\
& f(x, y)=\frac{1}{3}\left(e^{0.1 x}-\sqrt{y}\right)
\end{aligned}
$$

Euler's method is given by

$$
y_{1+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

where

$$
h=0.3
$$

For $\mathrm{i}=0, \mathrm{x}_{0}=0.3, \mathrm{y}_{0}=5$

$$
\begin{aligned}
y_{1} & =y_{0}+f\left(x_{0}, y_{0}\right) h \\
& =5+f(0.3,5) \times 0.3 \\
& =5+\frac{1}{3}\left(e^{0.1 \times 03}-\sqrt{5}\right) \times 0.3 \\
& =5+(-0.12056) \\
& =4.8794
\end{aligned}
$$

y_{1} is the approximate value of y at

$$
x=x_{1}=x_{0}+h=0.3+0.3=0.6
$$

For $\mathrm{i}=1, \mathrm{x}_{1}=0.6 \mathrm{y}_{1}=4.8794$

$$
y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h
$$

$$
4.8794+f(0.6,4.8794) \times 0.3
$$

$$
=4.8794+\frac{1}{3}\left(e^{0.1 \times 0.6}-\sqrt{4.8794}\right) \times 0.3
$$

$$
\leq 4.8794+(-0.11471)
$$

the approximate value of y at

$$
\begin{gathered}
x=x_{2}=x_{1}+h=0.6+0.3=0.9 \\
y(0.9) \approx 4.7647
\end{gathered}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \text { Thus } \frac{d x}{d t}=\frac{1}{3}\left(e^{0.1 x}-\sqrt{y}\right) \\
& \begin{aligned}
\frac{d y}{d x}(0.9) & \approx \frac{1}{3}\left(e^{0.1 x 0.9}-\sqrt{4.7647}\right) \\
& =-0.36288
\end{aligned}
\end{aligned}
$$

43.(D) A vector is perpendicular to a plane if and only if it is parallel to a normal vectorfor the plane.
To find a vector \vec{n} which is normal to the plane containing $P(2,1,5), Q(-4,3,4)$, and $R(3,0,6)$ we need to find two non-parallel vectors in the plane and compute their cross products. The vectors

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle-2-2,3-1,4-5\rangle=\langle-3,2-1\rangle \\
& \overrightarrow{P R}=\langle 3-2,0-1,6-5\rangle=\langle 1,-1,1\rangle
\end{aligned}
$$

are not parallel and belong to the plane, so we have
$\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -3 & 2 & -1 \\ 1 & -1 & 1\end{array}\right|=(2-1) \hat{\mathbf{i}}+(3-1) \hat{\jmath}+(3-2) \hat{\mathbf{k}}=\hat{\imath}+2 \hat{\jmath}+\hat{\mathbf{k}}$
44.(A) The correct choice is (A) and the correct answer is 7 !.

There are seven positions to be filled. The first position can be filled using any of the 7 letters contained in PROBkEM. The second position can be filled by the remaining 6 letters as the letters should not repeat. The third position can be filled by the remaining 5 letters only and so on. Therefore, the total number of ways of rearranging the 7 letter word $=7 * 6 * 5 * 4^{*} 3 * 2 * 1=7$! Ways.
45.(D) Here $\ell_{1} R \ell_{2}, \ell_{1}$ is parallel to ℓ_{2} and also ℓ_{2} is parallel to ℓ_{1}, so it is symmetric.

Clearly, it is also reflexive and transitive. Hence it is an equivalence relation.
46.(D) For $0<x<1$, we have $\frac{1}{2} x^{2}<x^{2}<x$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow-x^{2}>-x$, so that $e^{-x^{2}}<e^{-x}$.
Hence $\quad \int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x>\int_{0}^{1} e^{-x} \cos ^{2} x d x$.
Also $\cos ^{2} x \leq 1$
Therefore $\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x \leq \int_{0}^{1} e^{-x^{2}} d x<\int_{0}^{1} e^{-x^{2} / 2} d x=I_{4}$
Hence I_{4} is the greatest integral.
47.(D) We have $f^{\prime}(x)=f(x) \Rightarrow \frac{f^{\prime}(x)}{f(x)}=1$
$\Rightarrow \log f(x)=x+\log c \Rightarrow f(x)=c e^{x}$
Since $f(0)=1$, therefore $1=c e^{\circ} \Rightarrow c=1$
Thus $f(x)=e^{x}$.
Hence $g(x)=x^{2}-e^{x}$
$\therefore \int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} e^{x}\left(x^{2}-e^{x}\right) d x$
$=e-\frac{1}{2} e^{2}$
48.(B) This statement is always true that if an I.p.p has unbounded solution, then it's dual is infeasible.

But, if an LPP is infeasible then it's dual always has unbounded solution is not necessarily true.
49.(A) Let $q=1-p$ Sincehead appears first time in an even throw i.e., 2 or 4 or 6 etc.

$$
\begin{aligned}
& \Rightarrow \frac{2}{5}=q p+q^{3} p+q^{5} p+\ldots \\
& \Rightarrow \frac{q p}{1-q^{2}} \Rightarrow \frac{2}{5}=\frac{(1-p) p}{1-(1-p)^{2}}=\frac{1-p}{2-p} \\
& \quad \Rightarrow 2(2-p)=5(1-p) \Rightarrow p=\frac{1}{3}
\end{aligned}
$$

Hence (a) is correct answer.
50.(D) The number of ways of arranging n numbers in a row is $n!$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Considering digits $1,2,3,4, \ldots, k$ as one digit, we have $(n-k+1)$ digits which can be arranged in ($n-k+1$)! ways.

So, the total number of ways in the digits $1,2,3, \ldots, k$ appear as neighbours in the same order is $(n-k+1)$!.

Hence, required probability $=\frac{(n-k+1)!}{n!}$.
Hence (d) is correct answer.
51.(D) Out of 5 horses only one is the winning horse. The probability that Mr. A selected the losing horse $=\frac{4}{5} \times \frac{3}{4}$
\therefore The probability that Mr. A selected the winning horse

$$
=1-\frac{4}{5} \times \frac{3}{4}=\frac{2}{5}
$$

52.(A) The total number of cases are 2^{100}

The number of favourable ways

$$
{ }^{100} C_{1}+{ }^{100} C_{3}+\ldots .+{ }^{100} C_{99}=2^{100-1}=2^{99}
$$

Hence required probability $=\frac{2^{99}}{2^{100}}=\frac{1}{2}$.
53.(B)

$$
L_{0}(x)=\frac{(x-2.5)(x-3.0)}{(-0.5)(-1.0)}=2 x^{2}-11 x+15
$$

Similarly, $L_{1}(x)=-\left(4 x^{2}-20 x+24\right)$
and

$$
L_{2}(x)=2 x^{2}-9 x+10
$$

$$
L_{2}(x)=\left(2 x^{2}-11 x+15\right)(0.69315)-(4 x-20 x+24)(0.091629)+\left(2 x^{2}-9 x+\right.
$$

10) (1.09861)

$$
=-0.08164 x^{2}+0.81366 x-0.60761
$$

which is the required quadratic polynomial.
Putting $x=2.7$ in the above polynomial, we get

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\ln 2.7 \approx L_{2}(2.7) & =-0.08164(2.7)^{3}+0.81366(2.7)-0.60761 \\
& =0.9941164
\end{aligned}
$$

Actual value of $\ln 2.7=0.9932518$, therefore

$$
\mid \text { Error } \mid=\mathbf{0 . 0 0 0 8 6 4 6 . ~}
$$

54.(A) $\quad P^{\prime}(x)=5 x^{4}+20 x^{3}-80 x-80$, so $P^{\prime}(-2)=80-160+160-80=0$.

Thus, the zero at $p=-2$ has multiplicity $m \geq 2$, which implies that Newton's method has linear convergence (that is, the order of convergence is 1).
55.(B) Formula for $(n+1)$ the approximated value of x by False position method is

$$
x_{n+1}=x_{n-1}-\frac{\left[x_{n}-x_{n-1}\right] f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

For end approximation put $\mathrm{n}=1$

$$
\begin{aligned}
& x_{2}=x_{0}-\frac{\left(x_{1}-x_{0}\right) f\left(x_{0}\right)}{f\left(x_{1}\right) f\left(x_{0}\right)} \\
& x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
\end{aligned}
$$

Hence (B) is correct answer.
56.(D) The error in Simpson's rule for the integral $\int_{a}^{b} f(x) d x$ is given by $\left|\frac{(b-a)^{5} f^{i v}(c)}{180 n^{4}}\right|$, where $a<$ $c<b$
Here we have $a=1, b=3$ and $f(x)=\frac{1}{x}$, so that $f^{\prime \prime}(x)=24 x^{5}$.

Thus the required error is

$$
\left|\frac{(2)^{5}(24)}{(180)\left(4^{4}\right)\left(c^{5}\right)}\right|<\frac{(2)^{4}(24)}{(180)\left(4^{4}\right)}=\frac{1}{60}[\because c>1]
$$

Hence (d) is correct answer.
57.(C) $f(x)=x^{2}, a=1, b=9, n=4$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\mathrm{h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}=\frac{9-1}{4}=2
$$

x	1	3	5	9
y	1	9	25	81

By trapezoidal method

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& \int_{1}^{9} x^{2} d x=\frac{2}{2}\left[\left(1+9^{2}\right)+2\left(3^{2}+5^{2}+7^{2}\right)\right]
\end{aligned}
$$

Therefore, $\alpha=3, \beta=5$
58.(C) By Newton-method

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \text { or } x_{n}=x-\frac{f(x)}{f^{\prime}(x)} \\
& f(x)=x^{2}-x-2, f^{\prime}(x)=2 x-1 \\
& \text { In general, } x_{n}=x-\frac{x^{2}-x-2}{2 x-1}=\frac{x^{2}+2}{2 x-1}
\end{aligned}
$$

$$
\therefore \quad x_{1}=\frac{x_{0}^{2}+2}{2 x_{0}-1}, x_{2}=\frac{x_{1}^{2}+2}{2 x_{1}-1}
$$

$$
\because x_{0}=1
$$

$$
\therefore x_{1}=\frac{1+2}{2-1}=3 \quad \text { and } x_{2}=\frac{3^{2}+2}{6-1}=\frac{11}{5} .
$$

59.(B)

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} 2 x \\
& \left(\frac{\partial u}{\partial x}\right)^{2}=\frac{9}{4}\left(x^{2}+y^{2}+z^{2}\right) 4 x^{2}=9 x^{2}\left(x^{2}+y^{2}+z^{2}\right) \\
& \therefore\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2} \\
& =9\left(x^{2}+y^{2}+z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
& =9\left(x^{2}+y^{2}+z^{2}\right)^{2}=9 \cdot u^{4 / 3}
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
60.(D) $f(x)=\int_{0}^{x} t e^{-t^{2}} d t \Rightarrow f^{\prime}(x)=x e^{-x^{2}}=0 \Rightarrow x=0$
$f^{\prime \prime}(x)=e^{-x^{2}}\left(1-2 x^{2}\right) ; f "(0)=1>0$
\therefore Minimum value $\mathrm{f}(0)=0$.
61.(C) Let $x=5, y=0 \Rightarrow f(5+0)=f(5) \cdot f(0)$
$\Rightarrow f(5)=f(5) f(0) \Rightarrow f(0)=1$
Therefore, $f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}$

$$
\begin{aligned}
& \left.=\lim _{x \rightarrow 0} \frac{f(5) f(h)-f(5)}{h}=\lim _{h \rightarrow 0} 2\left[\frac{f(h)-1}{h}\right], \because \because f(5)=2\right\} \\
& =2 \lim _{h \rightarrow 0} \cdot\left[\frac{f(h)-f(0)}{h}\right]=2 \times f^{\prime}(0)=2 \times 3=6 .
\end{aligned}
$$

62.(C) $e^{x-[x]}$ is a periodic function with period 1 .

$$
\begin{aligned}
\therefore \quad & \quad \int_{0}^{1000} e^{x-[x]} d x=1000 \int_{0}^{1} e^{x-[x]} d x \\
& =1000\left[e^{x}\right]_{0}^{1}=1000(e-1)
\end{aligned}
$$

63.(C) Let $I=\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\tan x}-\sqrt{\cot x}}$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\tan \left(\frac{\pi}{2}-x\right)}-\sqrt{\cot \left(\frac{\pi}{2}-x\right)}} \\
& =\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\cot x}-\sqrt{\tan x}}=-1 \\
& 2 I=0 . \therefore I=0 .
\end{aligned}
$$

64.(A) $\quad \int_{0}^{2[x]}(x-[x]) d x=\int_{0}^{2[x] \cdot 1}(x-[x]) d x$

$$
=2[x] \int_{0}^{1}(x-[x]) d x
$$

$[\because x-[x]$ is a periodic function of period 1]

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$=2[x]\left(\left.\frac{x^{2}}{2} \right\rvert\,-\int_{0}^{1}[x] d x\right)=2[x]\left(\frac{1}{2}-0\right)=[x]$
65.(A) We know that $\log x$ is defined for $x>0$ and $\log |x|$ is defined for all $x \in R-\{0\}$

Also $|\log x| \geq 0$ and $|\log | x \| \geq 0$

\therefore Required area is symmmetrical in all the four quadrants and is equal to

$$
\begin{gathered}
4 \int_{0}^{1}|\log x| d x=-4 \int_{0}^{1} \log x d x, \\
=4[x \log x-x]_{0}^{1}=-4(-1)=4 \text { sq.unit, }\left(\because \lim _{x \rightarrow 0} x \log x=0\right) .
\end{gathered}
$$

66.(C) Given equations of curves $y=\cos x$ and $y=\sin x$ and ordinates $x=0$ to $x=\frac{\pi}{4}$. We know that area bounded by the curves

$=\sqrt{2}-1$.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
67.(B) Curve $y^{2}(2 a-x)=x^{3}$ is symmetrical about x-axis and passes through origin. Also $\frac{x^{3}}{2 a-x}<0$ for $x>2 a$ or $x<0$. So curve does not lie in $x>2 a$ and $x<0$, curve lies wholly on $0 \leq x \leq 2$ a.

\therefore Area $=\int_{0}^{2 a} \frac{x^{3 / 2}}{\sqrt{2 a-x}} d x=\int_{0}^{\pi / 2} 8 \mathrm{a}^{2} \sin ^{4} \theta d \theta,($ Put $x-2 a \sin 2 \theta)$
$=8 \mathrm{a}^{2}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]=\frac{3 \pi \mathrm{a}^{2}}{2}$, (Applying Gamma function)
68.(C) Given $x^{2}+y^{2}=1$

$$
\begin{align*}
& x+y+z=3 \tag{2}\\
& z
\end{align*}=0
$$

Here,
(i) z varies from 0 to $3-x-y$.
(ii) y varies from $\sqrt{1-x^{2}}$ to $\sqrt{1-x^{2}}$.
(iii) x varies from -1 to 1 .,

$$
\begin{aligned}
V & =\int_{-1}^{+1} d x \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d y \int_{0}^{3-x-y} d z \\
& =\int_{-1}^{+1} d x \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-2^{2}}} d y[z]_{0}^{3-x-y} \\
& =\int_{-1}^{+1} d x \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d y(3-x-y)
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& =\int_{-1}^{+1} d x\left[\frac{(3-x-y)^{2}}{-2}\right]_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \\
& \left.=-\frac{1}{2} \int_{-1}^{+1} d x\left[3-x-\sqrt{1-x^{2}}\right]^{2}-\left[2-x+\sqrt{1-x^{2}}\right]^{2}\right] \\
& =-\frac{1}{2} \int_{-1}^{+1}(6-2 x)\left[-2 \sqrt{1-x^{2}}\right] d x \\
& =\int_{-1}^{+1}(6-2 x) \sqrt{1-x^{2}} d x \\
& =\int_{-1}^{+1}\left[6 \sqrt{1-x^{2}}-2 x \sqrt{1-x^{2}}\right] d x
\end{aligned}
$$

$$
=6\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{-1}^{+1}+\left[\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}\right.
$$

$$
=3\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]
$$

$$
=3 \pi
$$

69.(B) Given $x^{2}+y^{2}=4$

$$
\begin{align*}
y+z & =3 \tag{1}\\
z & =0 \tag{3}
\end{align*}
$$

(i) z varies from 0 to $3-y$.
(ii) y varies from $-\sqrt{4-x^{2}}$ to $\sqrt{4-x^{2}}$.
(iii) x varies from -2 to +2 .

\therefore Required volume

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
V & =\int_{-2}^{+2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y \int_{0}^{3-y} d z \\
& =\int_{-2}^{+2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y[x]_{0}^{3-y} \\
& =\int_{-2}^{+2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y[3-y] \\
& =\int_{-2}^{+2} d x\left[3 y-\frac{y^{2}}{2}\right]_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \\
& =\int_{-2}^{+2}\left[3 \sqrt{4-x^{2}}-\frac{4-x^{2}}{2}+3 \sqrt{4-x^{2}}+\frac{4-x^{2}}{2}\right] d x \\
& =6 \int_{-2}^{+2} \sqrt{4-x^{2}} d x \\
& =6\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{2}^{+2} \\
& =6\left[2 \sin ^{-1} \frac{2}{2}-2 \sin ^{-1} \frac{-2}{2}\right] \\
& =12\left[\frac{\pi}{2}+\frac{\pi}{2}\right] \\
& =12 \pi
\end{aligned}
$$

70.(A) Putting $y=v x$ and therefore $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in the given equation, We have $x \sin v\left(y+x \frac{d v}{d x}\right)=v x \sin v-x$
or

$$
x \frac{d v}{d x}=-\operatorname{cosec} v \text { or } \sin v d v+\frac{d x}{x}=0
$$

or $\quad-\cos v+\log x=\log C$, where C is an arbitrary constant.
or $\log (x / C)=\cos v$ or $x / C=e^{\operatorname{cosV}}$ or $x=C e^{\cos (y / x)}$
71.(C) $\quad P(x)=\frac{2 x+1}{x}$
and hence an integrating factor is

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\exp \left[\int P(x) d x\right] & =\exp \left[\int\left(\frac{2 x+1}{x}\right) d x\right]=\exp (2 x+\ell n|x|) \\
& =\exp (2 x) \exp (\ell n|x|)=x \exp (2 x) .^{*}
\end{aligned}
$$

Multiplying Equation through by this integrating factor, we obtain

$$
x e^{2 x} \frac{d y}{d x}+e^{2 x}(2 x+1) y=x
$$

or

$$
x e^{2 x} \frac{d y}{d x}+e^{2 x}(2 x+1) y=x
$$

Integrating, we obtain the solutions

$$
x e^{2 x} y=\frac{x^{2}}{2}+c
$$

or

$$
y=\frac{1}{2} x e^{-2 x}+\frac{c}{x} e^{-2 x}
$$

where c is an arbitrary constant.
72.(C) Here, given differential equation is

$$
\begin{equation*}
x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x} \tag{i}
\end{equation*}
$$

Let $a x^{2}+b y^{2}=1$ be the solution of Eq. (i)
Now, differentiating it w.r.t. x

Again differentiating

$$
\begin{aligned}
& 2 a+2 b y \frac{d^{2} y}{d x^{2}}+2 b\left(\frac{d y}{d x}\right)^{2}=0 \\
& \text { or } \quad a+b\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=0
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

or $\quad\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=-\frac{a x}{b}$
\therefore By Eqs. (ii) and (iii), we can see that both satisfy Eq. (i)
\therefore Required solution is

$$
a x^{2}+b y^{2}=1
$$

2nd Method : Let $p \frac{d y}{d x}$ in given equation
$\therefore \quad x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x}$
then, we get

$$
x\left\{y \frac{d p}{d x}+p^{2}\right\}=y p
$$

or

$$
x \frac{d}{d x}(y p)=y p
$$

or

$$
\frac{d(y p)}{y p}=\frac{d x}{x}
$$

Now integrating it, we get
$\log y p=\log x+\log c$
or $\quad y p=x c$
or

$$
y \frac{d y}{d x}=x c \quad\left[\because p=\frac{d y}{d x}\right]
$$

or $\quad c x d x-y d y=0$
On integration, we get

$$
\frac{c x^{2}}{2}-\frac{y^{2}}{2}=k
$$

$$
\begin{aligned}
& \text { or } \quad\left(\frac{c}{2 k}\right) x^{2}\left(-\frac{1}{2 k}\right) y^{2}=1 \\
& \text { or } \quad a x^{2}+b y^{2}=1\left[\text { Here } a=\frac{c}{2 k} \text { andb }=-\frac{1}{2 k}\right]
\end{aligned}
$$

73.(B) Here, it is given that

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\frac{d^{2} y}{d x^{2}}-(a+b) \frac{d y}{d x}+a b y=Q(x)
$$

\therefore Its auxiliary equation will be

$$
\begin{array}{rr}
& D^{2}-(a+b) D+a b=0 \\
\text { or } & D^{2}-a D-b D+a b=0 \\
\text { or } & D(D-a)-b(D-a)=0 \\
\text { or } & (D-a)(D-b)=0
\end{array}
$$

$$
\therefore \quad \mathrm{PI}=\frac{1}{(\mathrm{D}-\mathrm{a})(\mathrm{D}-\mathrm{b})} \mathrm{Q}(\mathrm{x})
$$

$$
=\frac{1}{(D-a)}\left[\frac{1}{(D-b)} Q(x)\right]
$$

$$
=\frac{1}{D-a}\left[e^{b x} \int Q(x) e^{-b x} d x\right]
$$

$$
=e^{a x} \int\left[e^{b x} \int Q(x) e^{-b x} d x\right] e^{-a x} d x
$$

$$
=e^{a x} \int\left[e^{(b-a) x} \int Q(x) e^{-b x} d x\right] d x
$$

74.(C) Here, Assertion (A) : differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+5\right) y=e^{x}$ is linear equation of degree 2 is a true statement. But every first degree equation can not be a linear equation. So, Reason (R) is a false statement.
75.(D)

$$
\begin{aligned}
\text { PI: } & =\frac{1}{D^{3}+3 D^{2}+2 D} x^{2} \\
& =-\frac{1}{2 D}\left(1+\frac{3}{2} D+\frac{D^{2}}{2}\right)^{-1} x^{2} \\
& =\frac{1}{2 D}\left(1-\frac{3}{2} D+\frac{7}{4} D^{2}+\ldots\right) x^{2} \\
& =\frac{1}{2 D}\left(x^{2}-\frac{3}{2} \cdot 2 x+\frac{7}{4} \cdot 2\right) \\
& =\frac{1}{2 D}\left(x^{2}-3 x+\frac{7}{2}\right)
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=\frac{1}{2}\left(\frac{x^{3}}{3}-3 \cdot \frac{x^{2}}{2}+\frac{7}{2} x\right)
$$

76.(D) The given equation can be written as

$$
\left(D^{2}+2 D+10\right) y=-37 \sin 3 x
$$

Its auxiliary equation is $m^{2}+2 m+10=0$, which gives

$$
m=-1 \pm 3 i .
$$

\therefore C.F. $=\mathrm{e}^{-\mathrm{x}}\left[\mathrm{C}_{1} \cos 3 \mathrm{x}+\mathrm{C}_{2} \sin 3 \mathrm{x}\right]$, where C_{1} and C_{2} are arbitrary constants, and

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{D^{2}+2 D+10}(-37 \sin 3 x) \\
& =-37 \cdot \frac{1}{-9+2 D+10} \sin 3 x=-37 \cdot \frac{1}{2 D+1} \sin 3 x \\
& =-37 \cdot \frac{1}{\left(4 D^{2}-1\right)}(2 D-1) \sin 3 x \\
& =-37 \cdot \frac{1}{(-36-1)}(2 D-1) \sin 3 x \\
& =(2 D-1) \sin 3 x=6 \cos 3 x-\sin 3 x .
\end{aligned}
$$

Hence the required solution of the given differential equation is $y=e^{-x}\left(C_{1} \cos 3 x+C_{2}\right.$ $\sin 3 x)+6 \cos 3 x-\sin 3 x$.
Differentiating both sides of (i) with respect to x, we get
$d y / d x=e^{-x}\left(-3 C_{1} \sin 3 x+3 C_{2} \cos 3 x\right)-e^{-x}\left(C_{1} \cos 3 x+C_{2} \sin 3 x\right)-18 \sin 3 x-3 \cos$ $3 x$.
t is given that when $x=0, y=3$ and $d y / d x=0$.
\therefore From (i) and (ii) we have

$$
\begin{equation*}
3=C_{1}+6 \tag{iii}
\end{equation*}
$$

and $0=3 C_{2}-C_{1}-3$
\therefore From (i), we have

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$y=-3 e^{-x} \cos 3 x+6 \cos 3 x-\sin 3 x$
\therefore When $\mathrm{x}=\pi / 2$ we have from (v)
$y=-3 e^{-\pi / 2} \cos \frac{3}{2} \pi+6 \cos \frac{3}{2} \pi-\sin \frac{3}{2} \pi=-3^{-\pi / 2} .0+6.0+1$
or $\quad y=1$.
77.(A) The surface in this example is a level surface for the function $u=x y z$. Since the gradient of u is normal to the level surface $u=$ constant, therefore, at $(1,-1,-2)$ we have $\operatorname{grad} u=i \frac{\partial u}{\partial x}+\mathbf{j} \frac{\partial u}{\partial y}+\mathbf{k} \frac{\partial u}{\partial z}=+i y z+\mathbf{k} x z+\mathbf{k x y}=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$.

But this vector is directed along the unit normal n to $u=x y z$ in the direction of increasing u.

Hence $n=\frac{\text { gradu }}{\mid \text { gradu } \mid}=\frac{2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}}{|2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}|}= \pm \frac{1}{3}(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k})$.
\therefore the required unit normals are $\frac{1}{3}(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k})$ and $\frac{1}{3}(-2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$.
78.(C) $\quad \phi=x z$
$\operatorname{grad} \phi=\hat{\mathrm{i}} \frac{\partial}{\partial x}(x z)+\hat{\mathrm{j}} \frac{\partial}{\partial y}(x z)+\hat{\mathrm{k}} \frac{\partial}{\partial x}(x z)$
$=\hat{i} z+x \hat{k}$
79.(A) Let \vec{u} is a unit vector along \vec{A}, given by

$\vec{\nabla} \phi$ at the point $(1,2,-1)=3 \hat{i}+\hat{j}+\hat{k}$
directional derivative $\frac{\mathrm{d} \phi}{\mathrm{ds}}$, given by,

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\frac{\mathrm{d} \phi}{\mathrm{ds}} \vec{\nabla} \phi \cdot \overrightarrow{\mathrm{u}}= & (3 \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot \frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \quad \text { at }(1,2,-1) \\
& =2-\frac{2}{3}+\frac{1}{3}=\frac{5}{3} .
\end{aligned}
$$

80.(B) $3 f(x)+2 f\left(\frac{x+59}{x-1}\right)=10 x+30$

For $x=7,3 f(7)+2 f(11)=70+30=100$
For $x=11,3 f(11)+2 f(7)=140$

$$
\frac{f(7)}{-20}=\frac{f(11)}{-220}=\frac{-1}{9-4} \Rightarrow f(7)=4
$$

81.(D) In all other groups,

Number at the end $=\frac{1}{2} \times$ (Sum of positions of first and last letters).
i.e. $\quad \frac{1}{2}(D+H) \Rightarrow \frac{1}{2}(4+8)=6$

$$
\begin{aligned}
& \frac{1}{2}(U+O) \Rightarrow \frac{1}{2}(2 \uparrow+15)=18 \\
& \frac{1}{2}(X+P) \Rightarrow \frac{1}{2}(24+16)=20
\end{aligned}
$$

$$
\frac{1}{2}(Z+D)=\frac{1}{2}(26+4)=15
$$

But: $\frac{1}{2}(N+B) \Rightarrow \frac{1}{2}(14+2)=8 \neq 10$
Therefore, NB10 is the odd one.
82.(B) The given sequence of number follows the pattern:

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Therefore, Missing fractions $=\frac{1}{42}, \frac{1}{56}, \frac{1}{72}$ and $\frac{1}{90}$
83.(B) The new arrangement of letters is as given below :

C O N T R A C T U A
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

$\left.\begin{array}{ccccccc}L & A & U & T & C & A & R \\ 11 & 10 & 9 & 8 & 7 & 6 & 5\end{array}\right)$
So, new arrangement : LAUTCARTNOC.
Therefore, the third letter to the right of the sixth letter from the left end $=(6+3)=9$ th letter from the left end $={ }^{\prime} \mathrm{N}$

Therefore, 'Peppermints' from the top $=5{ }^{\text {th }}$
85.(D) The pattern is as follows :

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Similarly,

86.(D) The colour of clear sky \Rightarrow 'Blue'.

But according to the question
'Pink' \Rightarrow 'Blue'.
Therefore, the colour of clear sky \Rightarrow 'Pink'.
[Note : Do not opt for 'White' because 'Blue' means 'White' implies that 'White' is called 'Blue'.]
87.(D) Using the mathematical signs given in (d), we get the given equation as $45 \div 5+9 \div 3-2 \times 6=0$

Using BODMAS RULE, we get

$$
9+3-2 \times 6=0
$$

or,

$$
9+3-12=0
$$

or, $\quad 12-12=0$
or, $\quad 0=0$, which is true
Therefore, the correct answer is (D)
88.(D) Let the weight of free luggage $=\mathrm{ykg}$.

Then Digvijay has $\times \mathrm{kg}$ and Sankalp's has $2 x \mathrm{~kg}$ extra luggage.
Then the weight of Digvijay's luggage $=(y+x) \mathrm{kg}$
The weight of Sankalp's luggage $=(y+2 x) k g$
Now, according to the question,

$$
\begin{equation*}
(y+x)+(y+2 x)=60 \tag{i}
\end{equation*}
$$

If $3 x$ extra luggage cost Rs. 3600 then Rs. 5400 will be cost of

$$
\left(\frac{5400}{3600} \times 3 x\right)=\frac{9}{2} x
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Free luggage + Total extra luggage $=\frac{9}{2} x$

$$
\begin{aligned}
& y+(2 x+x)=\frac{9}{2} x \\
& \text { or } \quad y+3 x+\frac{9}{2} x \\
& \text { or, } \quad y=\frac{3}{2} x
\end{aligned}
$$

Put the value of y from (ii) in (i), we get

$$
\begin{aligned}
& \qquad \begin{array}{c}
2 \times \frac{3}{2}+3 x=60 \\
\text { or, } \quad x=10 \mathrm{~kg} \\
\text { So, } y=\frac{3}{2} x=\frac{3}{2} \times 10=15 \mathrm{~kg}
\end{array}
\end{aligned}
$$

Therefore, the weight of Sankalp's luggage

$$
=(y+2 x) \mathrm{kg}=(15+2 \times 10) \mathrm{kg}=35 \mathrm{~kg} .
$$

89.(D) If the size of the bacteria doubles each day, then the dish must be half full one day before it is full i.e.
(50 days- 1 day) $=49$ days.
Therefore, the dish will be half full in 49 days.
Important Note : Don't choose the option (c) blindly i.e. 25 days, as it gives half the time it takes to fill the dish, not the time when the dish is half full.
In case, when the dish was one-quarter full, then our answer would have been 48 days i.e (50 days-2 days).

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
[48 days : One-quarter full i.e. $\frac{1}{4}$ the full; 49 days : $\left(\frac{1}{4} \times 2\right)$ full i.e. $\frac{1}{2}$ th full (hallfull; 50 days: $\left(\frac{1}{2} \times 2\right)$ full i.e. completely full].
90.(D) The pressure of a given mass of a gas is directly proportional to its absolute temperature. Therefore in summers the atmospheric temperature is much higher as compared to winter. Consequently, the same volume of air will exert greater pressure in summer than in winter.Therefore, it is advisable in order to avoid burst.
91.(C) According to the question, initially he is at the centre O. His Journey is as shown in Fig

Fig:
The movements are from O to P, P tg q and $Q t R$.
Starting Point $=\mathrm{O}$ End Point $=\mathrm{R}$

Basic direction diagram
Therefore, R clearly lies to the South-west of O.
92.(A) The Blood relationship tree/chart can be constructed as given below :

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Seema's mother

Therefore, 'Seema' is the sister of the 'lady in photograph'.
93.(C) By analysing the given information, we get

By analysing the above table, it is clear that statement in option (C) is true.

let $\frac{1}{S_{B}-S_{T}}=x$ and $\frac{1}{S_{B}+S_{S}}=y$,
then

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{align*}
& 30 x+44 y=10 \tag{i}\\
& 40 x+55 y=13 \tag{ii}
\end{align*}
$$

By solving we get
$S_{B}=8 \mathrm{~km} / \mathrm{hr}$.
95.(A)

Rs. 600 for 2 years $=$ Rs. 1200 for 1 year
and
Rs. 150 for 4 years = Rs. 600 for 1 year
$\therefore \quad$ Total principal $=$ Rs. 1800 for 1 year
Interest = Rs. 90
$\therefore \quad$ Rate of interest $=\frac{90 \times 100}{1800 \times 1}=5 \%$
96.(A) A and B did the work for 35 days to complete it. A can complete the work in 60 days.
So,
$\frac{A \text { did }}{A \text { can }}+\frac{B \text { did }}{B \text { can }}=1$
$\therefore \quad \frac{35}{60}+\frac{35}{x}=1$
or
97.(D) The given series decrements by $15,20,25,30,35$ and so on. Therefore the next number will be 85 .
98.(D) $(2)^{2}+1=5$
$(5)^{2}+1=26$
$(26)^{2}+$
$(677)^{2}+1=458330$
99.(D) Series starting from
$2^{8}, 2^{9}, 2^{10}$ 2^{13}
100.(B) Most of the students say the answer to be 10% as 200 or we can say students find the $\mathrm{P} \%$ on the selling price but

$$
\mathrm{P} \%=\frac{\text { Profit }}{\mathrm{CP}} \times 100
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
So, Cost price =SP - Profit
$\therefore \quad \mathrm{P} \%=\frac{20}{180} \times 100$ i.e. $11 \frac{1}{9} \%$
101.(D) $\quad c=a \% b ;$
$c=5 \% 2=2.5$
Mismatching of " 2.5 " float value \& format specifier for 'c' variable i. e. '\% f'.
102.(C) $32=2^{5} ; 1$ kbyte $=2^{10}$; So $10+5=15$ bits are needed.
103.(C) Hence the BCD Coding for the word DIGIT in octal notation will be

```
D I G | T
6471 67 71 23
```

So the value of G in reference of word Digit is 67.
104.(B) Character constants are stored in memory as their ASClivalues respectively. Therefore, ch = ' z ' will store the ASCII value of z.
105.(D) $\quad(73)_{10}=(?)_{2}$

Thus (73) 10

$$
=(1001001)_{2}
$$

106.(D) It is easy to prove AND and OR are both commutative and associative.

Also

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
x \oplus y & =y \oplus x \text { and } x \oplus(y \oplus z)=(x \oplus y) \oplus z \\
& =x y z+x \overline{y z}+\bar{x} y \bar{z}+\bar{x} \bar{y} z
\end{aligned}
$$

But NAND (\uparrow) is commutative but not associative.

$$
\begin{aligned}
& \text { clearly } x \uparrow y=y \uparrow x \text { and } \\
& x \uparrow(y \uparrow z)=\bar{x}+y z \\
& (x \uparrow y) \uparrow z=x y+\bar{z}
\end{aligned}
$$

107.(A)

$$
\begin{aligned}
\mathrm{y} & =\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\bar{C}} \cdot(\overline{\mathrm{D}}+\mathrm{D})+\mathrm{A} \cdot \overline{\bar{B}} \cdot \overline{\mathrm{C}} \cdot(\overline{\mathrm{D}}+\mathrm{D}) \\
& =\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot(1)+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot(1) \\
& =\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot+\mathrm{A} \cdot \overline{\bar{B}} \overline{\mathrm{C}} \cdot \\
& =(\overline{\mathrm{A}}+\mathrm{A}) \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}} \\
& =\overline{\mathrm{B}} \cdot \overline{\mathrm{C}}
\end{aligned}
$$

108.(A)
$42_{(10)}=\frac{0100}{4} \frac{0010}{2}$
or 01000010 in BCD
109.(D) \therefore Data dictionary contains details of datta structures, data \& data stores
\therefore actigram represents processor activities, methods \& procedures in DFD.
\therefore Primary tool used in structured design is structure chart.
\therefore Data flow diagram is the graphical representation of information system
110.(D)

$\mathrm{p} \ll 211001100=(204)$
\uparrow filled state

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
112.(C) No output will be printed as else part is missing so, nothing will be printed as the condition goes wrong.
113.(B) $A B+\overline{A C}+A \bar{B} C(A B+C)$
$=A B+\overline{A C}+A \bar{B} C A B+A \bar{B} C C$
$=A B+\overline{A C}+A A B \bar{B} C+A \bar{B} C C$
$=A B+\overline{A C}+A \bar{B} C$
$=A B+\bar{A}+\bar{C}+A \bar{B} C$
$(\overline{\mathrm{AC}}=\overline{\mathrm{A}}+\overline{\mathrm{C}})$
$=\bar{A}+A B+\bar{C}+A \bar{B} \bar{C}$
$=\bar{A}+B+\bar{C}+A \bar{B} C$
(rearranging the terms)
$=\bar{A}+\bar{C}+B+A \bar{B} C$
$=\bar{A}+\bar{C}+B+\bar{B} A C$
$=\bar{A}+\bar{C}+B+A C$
$B+\bar{B} A C=B+A C$

$=\bar{A}+B+\bar{C}+A$
$=\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}+\mathrm{A}$
$=A+\bar{A}+B+\bar{C}$
$=1+B+\bar{C}$
$=1$
114.(C) $7=111_{2}$

115.(A) 9 is the 1 st digit from the right; its weight is 9×16^{0}

A is the 2 nd digit from the right; its weight is $\mathrm{A} \times 16^{1}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

5 is the 3 rd digit from right, its weight is 5×16^{2}

$$
\begin{aligned}
5 \mathrm{~A} 9(\text { hex })= & 5
\end{aligned} \quad \times 16^{2}+\mathrm{A} \times 16^{1}+9 \times 16^{0} .
$$

116.(C)

		001	011	010	110	111	101	100
00								
01			1	1	1	X		
11			1	1	X	1		
10	1	1					X	1

The terms $A^{\prime} B E$ corresponds to $\mathrm{A}^{\prime}-0 ; \mathrm{B}-1 ; \mathrm{E}-1 ; \mathrm{C}-0$ or 1 , $\mathrm{D}-0$ or 1 . Similarly marks all 1's and get the Karnaugh map as above. The 1's can be covered in the optimal way, if the slots marked X are set to 1 's. So the three X 's in the position ABCD'E, $A B C$ 'DE, $A B^{\prime} C D E$ ' are then don't care conditions to be set to 1 and used. Hence the answer is (c).
117.(C) 4 NAND is required to made a NOR

118.(B)
$Z=\overline{(\overline{A B})}(\overline{\mathrm{CD}})(\overline{\mathrm{EF}})=A B+C D+E F$
119.(D) The given 'c' fragment outputs the value of variable ' a '.

As in prinatf (), value of 'b' variable get assigned to 'a' variable i.e. 'a' becomes ' 20 ' then it will be pointed on the screen i.e. 20.
120.(C) $y=3^{*}(x++)$
$y=3 *(10++)=3 * 10$
$y=30$
then $\mathrm{x}=11$
$z=3$ * $(++x)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& z=3^{*}(++11) \\
& z=3^{*} 12 \\
& z=36
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

